vacuum fluorescent display (vfd) reference design for automotive applications
abstract: this article describes a vacuum fluorescent display (vfd) and some ideal applications for the technology. the reference design then shows how to use a max15005 power-supply controller in a flyback topology to obtain multiple output voltages for a vacuum fluorescent display.
introduction
this reference design shows a solution for obtaining the drive voltage required for a vacuum fluorescent display (vfd) power supply in automotive applications. the design includes the complete schematic, and presents the bill of materials (bom), load/line regulation measurements, and test results.
vfd basics
a vacuum fluorescent display (vfd) is a type of display used commonly on consumer-electronics equipment such as video cassette recorders, car radios, and microwave ovens. unlike liquid crystal displays (lcds), a vfd emits a very bright light with clear contrast and can easily support display elements of various colors. the technology is related to both the cathode ray tube and the nixie tube. unlike lcds, however, most vfds continue to function normally in subzero temperatures, making them ideal for outdoor devices in cold climates.
the vfd is composed of three basic electrodes—the cathode filaments, anodes (phosphor), and grids—under a high-vacuum condition in a glass envelope. the cathode consists of fine tungsten wires, coated by alkaline earth metal oxides which emit electrons. the grids are a thin metal mesh, which controls and diffuses electrons emitted from the cathode. the anodes are conductive electrodes on which the phosphor is printed to indicate characters, icons, or symbols. electrons emitted from the cathode are accelerated with positive potential applied to both grid and anode; upon collision with the anode the electrons excite the phosphor to emit light. the desired illuminated patterns can be achieved by controlling the positive or negative potentials on each grid and anode. the anode and grid require a dc-regulated voltage to avoid flickering of the display. for driving large vfds, the cathode requires ac drive to prevent luminance slant, i.e., the difference in brightness from one side of the display to the other. a frequency range of 20khz to 200khz is recommended to avoid audible noise and flicker.
design specifications and setup
this reference design features the max15005 power-supply controller optimized for automotive and vfd applications. the application circuit is designed to meet the following specifications:
vin: 9v to 16v continuous, 5.5v to 40v transient
vanode: 77vdc ±10% at 18ma (typ), 58ma (max)
vgrid: 55vdc ±10% at 14ma (typ), 41ma (max)
vfilament: 3.1vac ±10% at 350ma (typ), 385ma (max)
output ripple: 77v: 1vp-p; 55v: 0.5vp-p
line regulation, vin = 9v to 16v:
vanode = ±3%
vgrid = ±3%
vfilament = ±5%
load regulation: (see line/load regulation data section below)
switching frequency: 22khz
temperature: -40°c to 125°c
the schematic for the above specifications is shown in figure 1. in this design max15005a is used in the flyback configuration for obtaining three output voltages.
figure 1. schematic of the max15005b flyback converter for fsw = 22khz.
the bill of materials (bom) for this reference design is given in table 1.
table 1. bill of materials for vfd reference design
designator
value
description
part number
footprint
manufacturer
quantity
c1, c11, c12
10nf, 100v
capacitor
c2012x7r2a103k
0805
tdk®
3
c2, c7
270pf, 100v
capacitor
grm188r72a271ka01d
0805
murata®
2
c3, c5
100nf, 100v
capacitor
c2012x7r2a104k
0805
tdk
2
c4
3.3nf, 25v
capacitor
08053a332fat2a
0805
avx® corporation
1
c6, c8
1µf, 50v
capacitor
c3216x7r1h105k
1206
tdk
2
c9
100pf, 100v
capacitor
grm2165c2a101ja01d
0805
murata
1
c10
330µf, 35v
capacitor
–
smd
tdk
1
c13, c14, c15, c16, c17, c18
2.2µf, 100v
capacitor
grm32er72a225ka35l
1210
murata
6
d1
3a, 400v
diode
s3g
smc
vishay®
1
d2, d3, d4
1a, 200v
diode
es1d
sma
vishay
3
q1
11a, 55v
n-fet
buk92150-55a
–
nxp®
1
r1
32.4kω
resistor
smd, 5%, 0.125w
0805
koa
1
r2, r9, r17
100kω
resistor
smd, 5%, 0.125w
0805
koa
3
r3
21kω
resistor
smd, 1%, 0.125w
0805
koa
1
r4, r6
100kω
resistor
smd, 1%, 0.250w
1206
koa
2
r5
1.62kω
resistor
smd, 1%, 0.125w
0805
koa
1
r7
1.43kω
resistor
smd, 1%, 0.125w
0805
koa
1
r8
10kω
resistor
smd, 5%, 0.125w
0805
koa
1
r10
499ω
resistor
smd, 1%, 0.125w
0805
koa
1
r11
100ω
resistor
smd, 5%, 0.125w
0805
koa
1
r12
1kω
resistor
smd, 1%, 0.333w
1210
koa
1
r13
0.06ω
resistor
smd, 1%, sl1
sl1
koa
1
r14
33kω
resistor
smd, 5%, 0.125w
0805
koa
1
r15, r16
1.0ω
resistor
smd, 1%, 0.250w
1206
koa
2
t1
54µh
transformer
dct20efd-uxxsoa5
smd
tdk
1
z1
9.1v
zener diode
1smb5924bt
smb
vishay
1
ic1
max15005b
boost controller
max15005baue+
16tssop
maxim®
1
waveform measurements
the following test results were generated from the board built for evaluating the circuit.
test conditions: vin = 14v; ranode = 3.3kω; rgrid = 3.3kω; rfilament = 8ω.
ch1: mosfet q1 drain voltage (vdrain); ch2: current-sense voltage across r13 (visense).
test conditions: vin = 14v; ranode = 3.3kω; rgrid = 3.3kω; rfilament = 8ω.
ch1: anode output voltage ripple; ch2: grid output voltage ripple.
test conditions: vin = 14v; ranode = 3.3kω; rgrid = 3.3kω; rfilament = 8ω.
ch1: filament positive node voltage (vf1); ch2: filament negative node voltage (vf2).
test conditions: vin = 14v; ranode = 3.3kω; rgrid = 3.3kω; rfilament = 8ω.
m: effective filament voltage (vf1 - vf2).
line/load regulation data
the following line/load regulation data was taken from the test board over the input voltage range and load.
vin
i77 (ma)
i55 (ma)
v77 (vdc)
v55 (vdc)
vf (vrms)
9.0
7.7
5.5
77.0
55.2
2.41
7.7
16.7
77.0
55.0
2.64
7.7
44.0
77.0
54.8
3.03
23.0
5.5
77.0
55.4
2.82
23.0
16.7
77.0
55.2
2.97
23.0
44.0
77.0
55.0
3.24
61.6
5.5
77.0
55.8
3.35
61.6
16.7
77.0
55.6
3.43
61.6
44.0
77.0
55.4
3.62
14.0
7.7
5.5
77.0
55.2
2.52
7.7
16.7
77.0
55.0
2.75
7.7
44.0
77.0
54.8
3.14
23.0
5.5
77.0
55.4
2.80
23.0
16.7
77.0
55.2
3.08
23.0
44.0
77.0
55.0
3.36
61.6
5.5
77.0
55.8
3.50
61.6
16.7
77.0
55.7
3.59
61.6
44.0
77.0
55.4
3.79
16.0
7.7
5.5
77.0
55.2
2.63
7.7
16.7
77.0
55.0
2.86
7.7
44.0
77.0
54.8
3.25
23.0
5.5
77.0
55.4
3.04
23.0
16.7
77.0
55.2
3.20
23.0
44.0
77.0
55.0
3.49
61.6
5.5
77.0
54.8
3.25
61.6
16.7
77.0
55.0
3.49
61.6
44.0
77.0
55.4
3.92
conclusion
this application note presents a power-supply reference design for driving a typical vacuum fluorescent display in an automotive application. the design was built to the specifications presented here. the design was then tested. the circuit schematic, bom, and typical waveforms have been presented.
PCB设计人员需要掌握的技能
普科科技PRBTEK交直流电流探头PKC6100B的使用方法分享
莱克电气:坚持品质先行,打造高端民族品牌
欧莱新材IPO关注丨计划募资5.77亿,于7月18日上会
S331C S331D 天馈线测试仪 谭艳飞13543805
汽车中的真空管荧光显示器(VFD)参考设计,Vacuum F
荣耀9什么时候上市最新消息:华为荣耀9将于下月发布,UFS2.0能挽回形象吗?
英伟达Jetson设备上的YOLOv8性能基准测试
日本加快研发2nm hCFET晶体管
华为推出了其最新的平板电脑MatePad 5G
MWC究竟有哪些优秀的手机设备
3GPP对于5G标准和产业可持续性发展设立了23个标准立项
企业作业数字化转型需要什么工具,华为 ISDP 有话说
TCL两款折叠屏概念机展示,采用两种不同类型的铰链
RX560显卡正式发布:满血1024SP Polaris 11核心后发制人
虹科电子携手rooom为中国企业提供一站式AR解决方案
基于技术性能的光隔离器和数字隔离器视图
交流伺服电机和直流伺服电机各有何特点
华为为日本NTT和NEC结成的5G联盟打开争夺全球5G设备市场的机会
中国商用车后市场年度报告发布,万亿规模的中国商用车后市场正处在巨变之中