模拟电路网络课件 第四十九节:小功率整流滤波电路
10.1 小功率整流滤波电路
整流电路的任务是将交流电变换成直流电。完成这一任务主要是靠二极管的单向导电作用,因此二极管是构成整流电路的关键元件(常称之为整流管)。
图1表示一个最简单的单相半波整流电路。图中t为电源变压器,将220v的电网电压变换为合适的交流电压,d为整流二极管,电阻rl代表需要用直流电源的负载。其工作原理为:在变压器副边电压v2为正的半个周期内,二极管正向导通,电流经二极管流向负载,在rl上得到一个极性为上正下负的电压;而在v2为负半周时,二极管反向截止,电流等于零。所以,在负载电阻rl两端得到的电压vl的极性是单方向的,达到了整流的目的。
衡量整流电路性能的常用技术指标有两个:一个是反映转换关系的,用整流输出电压的平均值来表示;另一个是反映输出直流电压平滑程度的,称为纹波系数。此外,还有与选择整流管有关的参数:流过整流管的平均电流和整流管的反向峰值电压。
常见的几种整流电路有单相半波、全波、桥式和倍压整流电路。
一、单相桥式整流电路
1、工作原理
单相桥式整流电路如图1(a)所示,图中tr为电源变压器,它的作用是将交流电网电压vi变成整流电路要求的交流电压 ,rl是要求直流供电的负载电阻,四只整流二极管d1~d4接成电桥的形式,故有桥式整流电路之称。
单相桥式整流电路的工作原理可分析如下。为简单起见,二极管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。
在v2的正半周,电流从变压器副边线圈的上端流出,只能经过二极管d1流向rl,再由二极管d3流回变压器,所以d1、d3正向导通,d2、d4反偏截止。在负载上产生一个极性为上正下负的输出电压。其电流通路可用图1(a)中实线箭头表示。
在v2的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过二极管d2流向rl,再由二极管d4流回变压器,所以d1、d3反偏截止,d2、d4正向导通。电流流过rl时产生的电压极性仍是上正下负,与正半周时相同。其电流通路如图1(a)中虚线箭头所示。
综上所述,桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。
根据上述分析,可得桥式整流电路的工作波形如图2。由图可见,通过负载rl的电流il以及电压vl的波形都是单方向的全波脉动波形。
桥式整流电路的优点是输出电压高,纹波电压较小,管子所承受的最大反向电压较低,同时因电源变压器在正、负半周内都有电流供给负载,电源变压器得到了充分的利用,效率较高。因此,这种电路在半导体整流电路中得到了颇为广泛的应用。电路的缺点是二极管用得较多,但目前市场上已有整流桥堆出售,如ql51a~g、ql62a~l等,其中ql62a~l的额定电流为2a,最大反向电压为25v~1000v。故单相桥式整流电路常画成图1(b)所示的简化形式。
2、性能指标
整流电路的性能常用两个技术指标来衡量:一个是反映转换关系的,用整流输出电压的平均值来表示;另一个是反映输出直流电压平滑程度的,称为纹波系数。
(1)整流输出电压的平均值(即负载电阻上的直流电压vl)
vl定义为整流输出电压vl 在一个周期内的平均值,即
设变压器副边线圈的输出电压为 ,整流二极管是理想的。则根据桥式整流电路的工作波形,在vi 的正半周,vl = v2 ,且vl的重复周期为p ,所以
上式也可用其它方法得到,如用傅里叶级数对图xx_01中vl的波形进行分解后可得
式中恒定分量即为负载电压vl的平均值,因此有
(2)纹波系数
由vl的傅里叶级数表达式可以看出,最低次谐波分量的幅值为 ,角频率为电源频率的两倍,即2w。其他交流分量的角频率为4w、6w…等偶次谐波分量。这些谐波分量总称为纹波,它叠加于直流分量之上。常用纹波系数kg 来表示直流输出电压中相对纹波电压的大小,即
式中vlg为谐波电压总的有效值,它表示为
所以可得出桥式整流电路的纹波系数 。由于vl中存在一定的纹波,故需用滤波电路来滤除纹波电压。
3、整流元件参数
在选择整流二极管时,主要考虑两个参数,即最大整流电流和反向击穿电压。
在桥式整流电路中,二极管d1、d3和d2、d4是两两轮流导通的,所以流经每个二极管的平均电流为
在选择整流管时应保证其最大整流电流if > id 。
二极管在截止时管子两端承受的最大反向电压可以从桥式整流电路的工作原理中得出。在v2正半周时,d1、d3导通,d2、d4截止。此时d2、d4所承受的最大反向电压均为v2的最大值,
即
同理,在v2的负半周,d1、d3也承受到同样大小的反向电压。所以,在选择整流管时应取其反向击穿电压vbr > vrm 。
二、滤波电路
滤波电路用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器c,或与负载串联电感器l,以及由电容、电感组合而成的各种复式滤波电路。常用的结构如图1所示。
由于电抗元件在电路中有储能作用,并联的电容器c在电源供给的电压升高时,能把部分能量存储起来,而当电源电压降你时,就把能量释放出来,使负载电压比较平滑,电容c具有平波的作用;与负载串联的电感l,当电源供给的电流增加(由电源电压增加引起)时,它把能量存储起来,而当电流减小时,又把能量释放出来,使负载电流比较平滑,即电感l也有平波作用。
滤波电路的形式很多,为了掌握它的分析规律,把它分为电容输入式(电容器c接在最前面,如图1中的(a)、(c))和电感输入式(电感器l接在最前面,如图1中的(b))。前一种滤波电路多用于小功率电源中,而后一种滤波电路多用于较大功率电源中(而且当电流很大时仅用一电感器与负载串联)。
1、工作原理
图1为单相桥式整流、电容滤波电路。在分析电容滤波电路时,要特别注意电容器两端电压vc对整流元件导电的影响,整流元件只有受正向电压作用时才导通,否则便截止。
负载rl未接入(开关s断开)时的情况:设电容器两端初始电压为零,接入交流电源后,当v2为正半周时,v2通过d1、d3向电容器c充电;v2为负半周时,经d2、d4向电容器c充电,充电时间常数为
其中rint包括变压器副绕组的直流电阻和二极管d的正向电阻。由于rint一般很小,电容器很快就充电到交流电压v2的最大值 ,极性如图1所示。由于电容器无放电回路,故输出电压(即电容器c两端的电压vc)保持在 ,输出为一个恒定的直流,如图2中wt<0(即纵坐标左边)部分所示。
图2
接入负载rl(开关s合上)的情况:设变压器副边电压v2从0开始上升(即正半周开始)时接入负载rl,由于电容器在负载未接入前充了电,故刚接入负载时v2 vc时,二极管d1、d3受正向电压作用而导通,此时v2经二极管d1、d3一方面向负载rl提供电流,另一方面向电容器c充电(接入负载时的充电时间常数tc =( rl||rint)c≈rint c很小),vc将如图2中的bc段,图中bc段上的阴影部分为电路中的电流在整流电路内阻rint上产生的压降。vc随着交流电压v2升高到接近最大值 。然后,v2又按正弦规律下降。当v2 < vc时,二极管受反向电压作用而截止,电容器c又经rl放电,vc波形如图2中的cd段。电容器c如此周而复始地进行充放电,负载上便得到如图2所示的一个近似锯齿波的电压vl = vc,使负载电压的波动大为减小。
2、性能特点
由电容滤波电路的原理分析可知,电容滤波电路有如下特点:
(1)二极管的导电角q>t,c1的耐压大于 ,c2的耐压应大于。倍压整流电路一般用于高电压、小电流(几毫安以下)的直流电源中。
更精确电子结构的展示—新软件的作用
猫头鹰LED别针DIY图解
Anritsu S331D电缆天线分析仪
UV LED在印刷行业中的应用
改善永磁同步电机转矩控制精度的三种不同方案的优点和适用范围
模拟电路网络课件 第四十九节:小功率整流滤波电路
中国智能网联汽车产业发展报告
中国汽车产销连续8个月增长,有望推动行业继续向前发展
新能源汽车配电模式博弈
云南电网将再投172亿元完成新一轮农村电网改造升级
K系列5 W DC/DC转换器新增DIP24封装版本
百余根硅纳米线阵列监测循环肿瘤DNA
Zachman框架的结构及规则
DFP数据转发协议应用实例 7.使用 DLS1x与VSxxx设备的LoRA匹配
iPhone 12系列相比上一代的设计握持手感有所退步
微软在人工智能TTS语音合成技术上的最新进展
美的斥资12.7亿在印度新建科技园
工业路由器与Cisco ASA防火墙构建IPSec VPN配置指导
杭研以和家亲APP作为用户入口实现了1+1+N的发展模式
了解DDR5相对DDR4的优势与可能的影响