在 2021 年 6 月的 vlsi 技术和电路研讨会上,举办了一个关于“面向 2nm-cmos 和新兴存储器的先进工艺和器件技术”的短期课程。在本文中,我将回顾前两个介绍前沿逻辑器件的演讲。这两个演示文稿是互补的,并提供了对逻辑技术可能发展的出色概述。
台积电:未来十年的 cmos 器件技术
平面 mosfet 的栅极长度 (gate length:lg) 缩放限制在大约 25nm,因为单表面栅极(single surface gate)对亚表面泄漏( sub surface leakage)的控制很差。
添加更多的栅极(例如在 finfet 中),将使其中的沟道被限制在三个栅极之间,从而能够将 lg 缩放到沟道厚度的大约 2.5 倍。finfet 已经从英特尔最初采用的高度倾斜鳍壁(highly sloped fin walls )的 22 纳米发展到今天更加垂直的壁(vertical walls)和台积电为其 5 纳米工艺实施的高迁移率沟道 finfet。
更高的鳍会增加有效沟道宽度 (effective channel width:weff),weff = 2fh + fth,其中 fh 是鳍(fin)高度,fth 是鳍(fin)厚度。增加 weff 会增加重载电路(heavily loaded circuits)的驱动电流,但过高的鳍会浪费有源功率(active power)。直而薄的鳍片有利于短沟道效应(short channel effects),但 fw 受到迁移率降低和阈值电压可变性(threshold voltage variability)增加的限制。在他们的 5nm 技术中实施高迁移率沟道(作者指出,用于 pfet 鳍片的 sige)使 tsmc 的驱动电流提高了约 18%。
随着器件按比例缩小,寄生电阻和电容又将成为一个新问题。cpp(contacted poly pitch)决定标准cell宽度(见图 1),它是由 lg、接触宽度 (contact width :wc) 和垫片厚度 ( spacer thickness:tsp) 组成,cpp = lg + wc + 2tsp。减少 wc 会增加寄生电阻,除非进行工艺改进以改善接触,而减少 tsp 会增加寄生电容,除非使用较慢的介电常数间隔物。
图 1. 标准cell大小。
随着标准cell高度的降低,每个器件的鳍片数量必须减少(鳍片减少),见图 2。
图 2. 鳍减少。
fin depopulation 减少了单元尺寸,增加了逻辑密度并提供了更高的速度和更低的功率,但它确实降低了驱动电流。
从 finfet 过渡到堆叠的水平纳米片 (stacked horizontal nanosheets:hns),通过改变片宽(sheet width:见图 3)和通过堆叠更多片来增加 weff 的能力来提高灵活性。
图 3. 灵活的片宽。
添加sheets与 weff 相加,wee = n*2(w+h),其中 n 为sheets的数量,w 为sheets的宽度,h 为sheets的高度(厚度)。最终,sheets的数量受到底部sheets性能的限制。sheets之间的间距随着寄生电阻和电容的减小而降低,但必须足够大以使栅极金属(gate metals)和电介质(dielectric)进入间隙(gap)。在 hns 堆栈下方有一个底部寄生台面器件( bottom parasitic mesa device),可以通过注入或介电层进行控制。
在 finfet 中,nfet 电子迁移率高于 pfet 空穴迁移率。在 hns 中,迁移率更加不平衡,电子迁移率更高,空穴迁移率更低。可以通过用 sige 包覆沟道(cladding the channel )或使用应变松弛缓冲器( strain relaxed buffer)来提高空穴迁移率,但这两种技术都会增加工艺复杂性。
imec 引入了一个称为 forksheet (fs) 的概念,其中在 nfet 和 pfet 之间放置了一个介电层,从而减少了 np 间距,从而形成了更紧凑的标准单元,见图 4。
图 4.forksheet
除了具有 fs 的 hns,还有cfet(complementary fet ),后者堆叠 nfet 和 pfet,从而无需水平 np 间距。
图 5. cfet。
cfet 选项包括单片集成(monolithic integration),其中的 nfet 和 pfet 器件都制造在同一晶圆上。此外还有顺序集成(equential integration),其中的 nfet 和 pfet 制造在单独的晶圆上,然后结合在一起,这两种选择都有多个挑战仍在研究中。
除了 cfet,演讲者还谈到了将晶体管集成到后端 (back end of line:beol) 互连中的 3d 集成。这些选项需要具有多晶硅沟道(polysilicon channels )或氧化物半导体的低温晶体管,这会带来各种性能和集成挑战。
在前端 (front end of line:feol) 中,正在探索 cfet 之外的选项,例如高迁移率材料、隧道 fet (tunnel fets:tfet)、负电容 fet (negative capacitance fets:ncfet)、低温 cmos (cryogenic cmos)和低维材料(dimensional materials)。
低维材料采用纳米管或二维材料的形式,这些材料提供比 hns 更短的 lg 和更低的功率,但仍处于早期研究阶段。低维材料也适用于 hns/cfet 方法,可选择堆叠许多层。
imec:hns/fs/cfet 选项
随着 finfet 达到极限,鳍变得越来越高、越来越薄、越来越近。鳍片数量减少正在降低驱动电流并增加可变性,见图 6。
图 6. finfet 缩放。
当今最先进的技术是每个设备有 2 个鳍片的 6 轨单元(track cell)。转向单鳍和更窄的 np 间距将需要新的器件架构来提高性能,见图 7。
图 7. 6 轨单元
为了继续 cmos 缩放,我们需要从 finfet sot hns 过渡到具有 fs 和 cfet 的 hns,见图 8。
图 8. 用于 cmos 缩放的纳米片架构。
从 finfet 过渡到 hns 提供了几个优势,大的 weff,改进的短沟道效应,这意味着更短的 lg 和更好的设计灵活性,因为能够改变片宽,见图 9。
图 9. 从finfet 到 hns。
演讲者继续详细介绍 hns 处理以及一些挑战和可能的解决方案。除了四个主要模块外,hns 工艺与 finfet 工艺非常相似,见图 10。
图 10. hns 工艺流程。
尽管 hns 流程类似于 finfet 流程,但不同的关键模块很困难。释放蚀刻和实现多个阈值电压特别困难。关于 hns 所需的流程模块更改的细节,有很多很好的信息,这超出了像这样的评论文章的范围。没有明确讨论的一件事是,为了将 hns 工艺扩展到 5 轨单元,需要埋入式电源轨 (buried power rails:bpr),这是另一个仍在开发中的困难工艺模块。
正如在之前的演示中所见,fs 可以实现 hns 的进一步扩展。图 11 展示了介电壁如何微缩( dielectric wall) hns 单元的更详细视图。
图 11. 水平 nanosheet/forksheet 架构比较。
fs 工艺需要插入介电壁以减小 np 间距,图 12 说明了工艺流程。
图 12. forksheet 流程。
除了 fs,cfet 通过堆叠器件提供零水平 np 间距。图 13. 说明了 cfet 概念。
图 13. cfet 概念。
cfet 对于 sram 缩放特别有趣。sram 缩放已经放缓并且跟不上逻辑缩放。cfet 提供了将 sram 缩放恢复到历史趋势的潜力,见图 14。
图 14. 使用 cfet 进行 sram 缩放。
如前所述,有两种 cfet 制造方法,单片和顺序。图 15 对比了这两种方法的优缺点。
图 15. cfet 制造选项。
科技助臂世界杯:几大创新门线技术的对比
三菱PLC移位指令
多变形结构PCB线路板覆铜
盛美半导体首台12英寸单晶圆薄片清洗设备验收 仅用6个月
硅数股份为国际知名半导体厂商提供IP授权及芯片设计服务业务
台积电:未来十年的CMOS器件技术
小米6最终完整曝光,同时Note3也有新消息,配置残暴
推动底层技术变革 加速AR/VR产业应用落地
华为5G专利全球排名第一名占比达到20%
龙芯中科连续两年为安徽省大数据与人工智能应用竞赛保驾护航
亚马逊构建高度自动化人工智能系统 可追踪公司员工工作效率
关于二极管的PN结的知识介绍
压力传感器的原理及应用
紫光展锐规划的产品战略
工程师应该掌握的STM32单片机关键基础精华
PS5手柄造型疑似曝光 手柄摇杆更小扳机键更大
如何避免运放负反馈产生的自激振荡?
digilent口袋仪器平台简介
加密货币怎么赚钱
莫仕EXTreme Ten60Power连接器荣获中国CEM大奖