SiC MOSFET学习笔记:各家SiC厂商的MOSFET结构

当前量产主流sic mosfet芯片元胞结构有两大类,是按照栅极沟道的形状来区分的,平面型和沟槽型。
如上图,左边是一颗典型的平面sic mosfet芯片(宏观图)其中g区是栅极焊盘(gate pad),也就是引出栅极引线的地方,起控制作用。
aa是有源区(active area),其中aa的正面是源级区(source),键合源级引线过大电流;
背面是漏极区(drain),右图黑色部分代表背面金属(back metal),一般是钛镍银(tiniag)或者铝硅铜(alsicu)或者镍钯金(nipdau),背面金属焊接到衬板上,电流方向是衬板到芯片背面再到芯片正面再从源级引线出来。
可以看到左边的图中,在有源区aa中有许多条状单元,每个单元大小形状都一模一样,这样的最小功能单元叫元胞,芯片的功能就是由这亿万个元胞来完成的,元胞与元胞之间的中心距离为pitch。
sic mosfet经过几代的发展,目前已经出现从平面栅到沟槽栅的各个版本:
其中平面栅(planar gate)是最早出现的,由于其结构简单,fab工艺难度小,因此其研发难度相对较低,但是由于平面栅的沟道电阻较大,因此在效率方面相比沟槽栅较弱。
相比之下稳定的沟槽栅的出现稍晚,直到2016年,才有稳定的量产方案出来,其中最具有代表性的是日本rohm的双沟槽结构(double trench)和英飞凌的半包沟槽结构(asymmetrical trench)
由于沟槽栅结构相比平面栅结构消除了大部分的jfet效应,因此其沟道电阻较小,通态阻抗相比平面栅结构优势明显。
上图是三家典型的厂商器件结构,其中a家我猜是rohm的双沟槽栅结构,b我猜是cree的平面栅结构,c不用猜,肯定是英飞凌的非对称半包沟槽栅结构。
由上文可知,平面栅性能肯定是不如沟槽的,这个从各家产品的rdson就看得出来,典型的1200v 5*5mm芯片英飞凌大概能做到15mω以下,rohm能做到13mω,cree和st由于是平面栅,即使工艺能力很强,也只能做到17mω。
但是沟槽结构也带来一个问题,就是制造工艺难度大,特别是沟槽底部拐角处,电场强度大,电应力集中,容易产生可靠性问题。高槽角电场在si材料可能风险不大,但是sic材料就容易出问题。
这张图就可以很清晰地看到电场的分布情况,我们知道,电势是场强对距离的积分,同时我们还知道,p-n结会形成耗尽层,并在反偏情况下向外拓展,这就使得电场强度的分布不均匀,尤其是在拐角处。
通过仿真分析可以看出,栅极沟槽拐角处和源级沟槽的拐角处电场强度是非常大的,如果这个场强超过材料本身的临界击穿场强,就会造成击穿,器件失效。
如何解决沟槽栅拐角电场集中的问题?目前常见的方案是添加底部p型掩蔽层(p shield)进行保护,也叫bpw(bottom p well)
如图,a是常规的mos(conventional mos)结构不带p掩蔽层,
b是rohm的双沟槽(double trech)结构形成的源级p掩蔽层
c是定制掩蔽栅(shielded fin)结构,特意在栅极下方形成p掩蔽层
来源:重庆大学蒋华平老师
可以看到,不加任何掩蔽层(保护层)的常规结构a,其沟槽拐角处的电场强度最高,达到了5.87mv/cm。
而b的双沟槽结构通过源级沟槽形成的p掩蔽层,通过改变耗尽层形状,改变了电场方向,缓解了沟槽拐角处的电场集中,场强降到了3.21mv/cm
c的定制化掩蔽栅(shield fin)结构和英飞凌的半包沟槽类似,直接在拐角处添加一个p掩蔽层,对栅极沟槽进行保护,场强降到了2.55mv/cm
最后欣赏下芯片设计美学之 rohm双沟槽  vs  英飞凌半包沟槽:
来源:东南大学zhaoxiang wei老师


1699元 麦芒10 SE 5G手机正式开售
临港自动驾驶企业将5G和自动驾驶结合发展智慧交通
ADAS高级驾驶辅助系统的起缘及功能定义说明
看看哪些智能硬件在助战二胎政策?
CMOS图像传感器市场的深入阐述
SiC MOSFET学习笔记:各家SiC厂商的MOSFET结构
TiDB底层存储结构LSM树原理介绍
可穿戴设备:始终确保工人安全
2021年人工智能数据采集标注行业的四大趋势
ToF传感器究竟有多神奇?
基于石墨烯-金属硫化物纳米复合材料的气体传感器
MCU的基本结构及工作原理
BJ-EPM240学习板之VGA接口实验
台积电表示已经部署了全球约50%的极紫外光刻设备
STM32单片机的独立看门狗和窗口看门狗的特点及用法解析
万亿市场!搞懂物联网产业链很简单!
瑞昱半导体:晶圆厂产能满载,担忧晶圆产能不足会影响公司营收
物通博联水利智能网关实现水文遥测站数据采集远程监控
研华推出EPC-T4286紧凑型嵌入式工控机 满足各类小型化行业应用需求
高频RFID技术及其应用案例综述