引言
低压小功率逆变电源已经被广泛应用于工业和民用领域。特别是新能源的开发利用,例如太阳能电池的普遍使用,需要一个逆变系统将太阳能电池输出的直流电压变换为220v、50hz交流电压,以便于使用。本文给出了一种用单片机控制的正弦波输出逆变电源的设计,它以12v直流电源作为输入,输出220v、50hz、0~150w的正弦波交流电,以满足大部分常规小电器的供电需求。该电源采用推挽升压和全桥逆变两级变换,前后级之间完全隔离。在控制电路上,前级推挽升压电路采用sg3525芯片控制,采样变压器绕组电压做闭环反馈;逆变部分采用单片机数字化spwm控制方式,采样直流母线电压做电压前馈控制,同时采样电流做反馈控制;在保护上,具有输入过、欠压保护,输出过载、短路保护,过热保护等多重保护功能电路,增强了该电源的可靠性和安全性。
该电源可以在输人电压从10.5v到15v变化范围内,输出220v±10v的正弦波交流电压,频率50hz±o.5hz,直流分量
l 主电路
逆变电源主电路采用推挽升压和全桥逆变两级变换。
输入电压一端接在变压器原边的中间抽头,另一端接在开关管s1及s2的中点。控制s1及s2轮流导通,在变压器原边形成高频的交流电压,经过变压器升压、整流和滤波在电容c1上得到约370 v直流电压。对s3~s6组成的逆变桥采用正弦脉宽调制,逆变输出电压经过电感l、电容c2滤波后,最终在负载上得到220 v、50 hz的正弦波交流电。采用高频变压器实现前后级之间的隔离,有利于提高系统的安全性。
输入电压10.5~15 v,输入最大电流15 a,考虑一倍的余量,推挽电路开关管s1及s2耐压不小于30 v,正向电流不小于30 a,选用irfz48n。
升压高频变压器的设计应满足在输入电压最低时,副边电压经整流后不小于逆变部分所需要的最低电压350 v,同时输入电压最高时,副边电压不能过高,以免损坏元器件。同时也必须考虑绕线上的电压降和发热问题。选ee型铁氧体磁芯,原副边绕组为7匝:300匝。关于高频变压器的设计可以参考文献。
变压器副边输出整流桥由4个her307组成.滤波电容选用68μf、450 v电解电容。
根据输出功率的要求,输出电流有效值为0 6~o.7 a,考虑一定的电压和电流余量,逆变桥中的s3~s6选用irf840。逆变部分采用单极性spwm控制方式,开关频率fs=16 khz。
滤波电感电容lc≈2.5×10-3,可选取l=5 mh,c=4.7μf。滤波电感l选用内径20 mm,外径40 mm的环形铁粉芯磁芯,绕线采用直径o.4 mm的漆包线2股并绕,匝数180匝。
2 数字化spwm控制方法
该逆变电源的控制电路也分为两部分。前级推挽升压电路由pwm专用芯片sg3525控制,采样变压器绕组电压实现电压闭环反馈控制。后级逆变电路由单片机picl6c73控制,采样母线电压实现电压前馈控制。前级控制方法比较简单,在这里主要介绍后级单片机的数字化spwm控制方式。
2.l 正弦脉宽调制spwm
正弦脉宽调制spwm技术具有线性调压、抑制谐波等优点,是目前应用最为广泛的脉宽调制技术.一般用三角波μc作为载波信号,正弦波ug=ugmsin2πfgt作为调制信号,根据μ和μg的交点得到一系列脉宽按正弦规律变化的脉冲信号。则可以定义调制比m=ugm/ucm,频率比k=fc/fa=tg/tco。
正弦脉宽调制可以分为单极性spwm和双极性spwm。双极性spwm的载波为正负半周都有的对称三角波,输出电压为正负交替的方波序列而没有零电平,因此可以应用于半桥和全桥电路。实际中应选择频率比k为奇数,使得输出电压μo具有奇函数对称和半波对称的性质,μc无偶次谐波。但是输出电压μc中含有比较严重的n=k次中心谐波以及n=jk±6次边频谐波。其控制信号为相位互补的两列脉冲信号。
单极性spwm的载波为单极性的不对称三角波,输出电压也是单极性的方波。因为输出电压中包含零电平,因此,单极性spwm只能应用于全桥逆变电路。由于其载波本身就具有奇函数对称和半波对称特性,无论频率比k取奇数还是偶数输出电压uo都没有偶次谐波。输出电压的单极性特性使得uo不含有n=k次中心谐波和边频谐波,但却有少量的低频谐波分量。单极性spwm的控制信号为一组高频(载波频率fe)脉冲和一组低频(调制频率fk)脉冲,每组的两列脉冲相位互补。
2.2 pic单片机的软件实现
picl6c73是microchip公司的一款中档单片机,它功能强大而又价格低廉。picl6c73内部有两个ccp(capture、compare、pwm)模块,当它工作在pwm模式下,ccp x引脚就可以输出占空比10位分辨率可调的方波。
tmr2在计数过程中将同步进行两次比较:tmr2和ccprxh比较一致将使ccpx引脚输出低电平;tmr2和pr2比较一致将使ccpx引脚输出高电平,同时将tmr2清o,并读入下一个ccprxh值,如图3所示。因此,设定ccprxh值就可以设定占空比,设定pr2值就可以设定脉冲周期。
在本设计中,全桥逆变器采用单极性spwm调制方式。ccp1模块用来产生高频脉冲,ccp2模块用来产牛低频脉冲。选择16m晶振,根据脉冲周期tc=[(pr2)+l]×4×4*tosc和频率比k=tg/tc,可以取pr2=249,k=320,则有tg=20 ms,高频脉冲序列每一一个周期中包含:320个脉冲。设调制比m=0.92,将,t=tgn/320代入式(2),联立式(3)可以得到产生高频脉冲所需要的ccp1h的取值,第0~79个脉冲为
ccp1h=230sin(πn/160) (4)
式中:n为o→79。
考虑到正弦波的对称性,可以得到第80~159个脉冲为
ccp1h=230sin[π×(80—n)/160] (5)
根据脉冲的互补性,可以得到第160~239个脉冲为
ccp1h=250—230sin(πn/160) (6)
第240~319个脉冲为
ccp1h=250—230sin[π×(80一n)/160](7)
因此,在程序中存储表格230sin(πn/160),n∈[0,79]就可以得到整个周期320个高频脉冲的ccp.h值。第o~79点,ccp1h为正向查表取值;第80~159点,ccp1h为反向查表取值;第160~239点ccp1h为计数周期减去正向查表值;第240~319点ccp1h为计数周期减去反向查表值。
对于低频脉冲,前半个周期可以看成由占空比始终为1的高频脉冲组成,后半个周期看成由占空比始终为0的高频脉冲组成,因此,第o~159个脉冲,ccp2h=250,第160~319个脉冲,ccp2h=o。
3 实验结果
实验中,输入电压变化范围为10.5~15 v,输出滤波电感5.3mh,滤波电容8μf,从空载到150w负载状态下都可以输出(220±10v)、50hz的正弦波交流电压。
4 结语
本文详细分析了一种正弦波输出的逆变电源的设计,以及基于单片机的数字化spwm控制的实现方法。数字化spwm控制灵活,电路结构简单,控制的核心部分在软件中,有利于保护知识产权。
采用SDK-700系统设计套件的全新物联网解决方案
区块链上装了数字艺术?
磁性高分子材料介绍及应用
工业自动化监控解决方案
浅谈星闪技术短距离无线通信技术
正弦波输出逆变电源的设计
汽车橡胶油封圈视觉检测外观缺陷的介绍
亿智电子:基于自主IP的AI SoC芯片,提供全栈式整体解决方案
VC最好回报的40个案例,我们可以从中学到什么呢?
消息称首批小鹏G3已抵达挪威
中国移动正在积极构建端到端网络基础设施加速5G商用进程
cpu使用率忽高忽低问题原因有哪些
歌尔股份投2.8亿美元建越南子公司,专攻耳机、智能设备
Web3.0 & 区块链3.0你知道是什么吗
德索高压连接器的普及加快工业科技化智能化进程
【世说芯品】当嘉陵江变身马尔代夫?芯讯通助推“智”水有“数”
MSN群的问答全集
华为手机升级鸿蒙系统,鸿蒙系统用户量预计将达到2.5亿
热敏电阻温度计电路 -(含电源电路原理图)
基于Vesper专利的压电MEMS麦克风VM2020设计