reference design for a high-current power supply with lossless current sensing using the max5060
abstract:this reference design shows how to use a max5060 current-mode, step-down power-supply controller to implement lossless current sensing for high-current applications. in this design, the series resistance (dcr) of the inductor is used for current sensing to avoid power loss in the current-sense resistor.
introductiontoday's data processing elements demand higher currents from power supplies to achieve higher speed. lossless current sensing and ground bouncing are key challenges for accurate control of output voltage and current in these applications.
the max5060 pwm buck power-supply controller uses an average-current-mode control technique to track the load current, and it employs differential sensing to accurately control the output voltage. in this reference design, the series resistance (dcr) of the inductor is used for current sensing to avoid power loss in the current-sense resistor.
this design shows a solution for implementing a high-current (30a) power supply with high system efficiency and good load regulation. the complete schematic, bill of materials (bom), efficiency measurements, and test results are included below.
specifications and design setupthis reference design achieves the following specifications.
input voltage: 12v ±10%
output voltage: 1.5v
output current: 30a
output ripple: ±15mv
input ripple: ±250mv
efficiency: > 88% with half of full load (15a)
switching frequency: 275khz
footprint size: 5cm × 3.3cm
the schematic for this reference design is shown in figure 1, and the bom is given in table 1. in this design, the max5060 is used in a buck configuration.
more detailed image (pdf, 100kb)
figure 1. schematic of the max5060 buck converter for fsw = 275khz.
table 1. bill of materials
designator
description
comment
footprint
manufacturer
quantity
value
c1, c20
capacitor
grm1555c1h101jz01d
402
murata
2
100pf
c2
capacitor
grm155r71e223ka61d
402
murata
1
22nf
c3
capacitor
grm155r71h682ka88d
402
murata
1
6.8nf
c4
capacitor
grm1555c1h470jz01d
402
murata
1
47pf
c5
capacitor
grm155r61a224ke19d
402
murata
1
0.22µf
c6, c12
capacitor
grm155r61a474ke15d
402
murata
2
0.47µf
c7, c8, c9, c18
capacitor
grm188r71a105ka61d
402
murata
4
1µf
c10, c11
capacitor
grm32er71c226ke18l
1210
murata
2
22µf/16v
c13, c14
capacitor
grm32er60j107me20l
1210
murata
1
100µf/6.3v
d1
schottky diode
cmhsh5-2l
sod123
central semiconductor
1
20v, 500ma schottky
d2
schottky diode
ups835le3
powermite3
microsemi
1
35v, 8a schottky rectifier
l
inductor
t5060 (0.6µh)
t5060_falco_inductor
falco
1
0.6µh
r1
resistor
res1
402
multisource
1
1.7kω
r3, r16
resistor
res1
402
multisource
2
12.7kω
r4, r21
resistor
res1
402
multisource
2
4.99kω
r5, r20
resistor
res1
402
multisource
2
100kω
r6
resistor
res1
402
multisource
1
226kω
r7
resistor
res1
402
multisource
1
open
r8, r19
resistor
res1
402
multisource
2
10kω
r9
resistor
res1
402
multisource
1
0
r10
resistor
res1
402
multisource
1
5.6kω
r11
resistor
res1
402
multisource
1
1ω
r12
resistor
res1
402
multisource
1
2.2ω
r13, r22
resistor
res1
402
multisource
2
715ω
r14
resistor
res1
402
multisource
1
1.82ω
r15, r18
resistor
res1
402
multisource
2
22ω
r17
resistor
res1
402
multisource
1
8.45kω
u1
pwm controller
max5060
28-tqfn-ep
maxim
1
—
efficiency plotsfigure 2 provides a plot of efficiency versus load current plots for this design, and figure 3 presents load-regulation data.
figure 2. load current versus converter efficiency for vin = 12v.
figure 3. load current versus converter output voltage for vin = 12v.
experimental resultsconverter output voltage and load current are shown in figures 4–7 for different input excitations.
figure 4. converter waveforms with vin = 12v and iout = 30a.
vin = 12v and iout = 2 × 15a
ch1: output current (2x)
ch2: output voltage
ch3: input voltage
ch4: high-side mosfet gate drive
figure 5. input and output ripple waveforms with vin = 12v and iout = 30a.
vin = 12v and iout = 2 × 15a
ch2: output voltage ripple
ch3: input voltage ripple
figure 6. line transient response.
vin = 0 to 12v and iout = 2 × 15a
ch2: output voltage
ch3: input voltage
figure 7. load transient response.
vin = 12v and iout = 1a to 7a
ch1: output current transient (1a to 7a)
ch2: output voltage ripple
the board developed for this application is shown in figure 8.
5G车载网关让医院无人配送车“灵活”起来
超宽带 (UWB) 如何助力打造智能工厂?后面四个落地案例值得参考
从fan-in、fan-out看setup和hold time violation
Linux 内核数据结构:位图(Bitmap)
AG9311MAQ扩展成本低性价比高的Type-C
Reference Design for a High-Cu
米家投影仪青春版评测 将性价比做到了极致
Velox机器人柔性鳍能力独特 既能在水中或水面自如行进
通过蓝牙控制 RGB LED 颜色
机床在线测头校准的重要性
生益科技与和美精艺战略合作签约仪式成功举行
AD56xx系列DAC的驱动设计与实现
各国政府出手,解决汽车芯片荒问题
平衡晶格氧活性和可逆性实现高比能钠离子电池层状正极材料
未来3-5年 边缘计算会是下一个百亿蓝海市场
小米note3什么时候上市?小米note3最新消息:小米note3蓄势待发,8月上市,全曲面屏+双摄像头设计
小米6最新消息:价值10万且无法量产的小米6亮银探索版真机图赏
CMOS图像传感器设计考虑因素及典型应用方案
向机器人征税,将影响未来
LVDS为汽车应用提供强大的视频接口