虽然人脸识别技术经历了较长的研究阶段,并且应用也开始落地,但至今人脸识别技术还是被认为是生物特征识别技术中较为困难的研究课题之一。另外,人脸识别技术自身优势也存在两面性,自然性、不易察觉以及非接触性也致使人脸识别技术在一些特定领域面临环境复杂性。
背景环境的复杂多样,
在进行人脸识别前需要先对监控场景中的人脸进行定位,即人脸检测。人脸检测的正确与否直接影响人脸识别性能。当监控场景的背景较为复杂时,人脸检测率也会随之降低,因此能够适应复杂背景环境的人脸检测算法是人脸识别技术的难点之一。
光照条件的复杂多变
在智能视频监控系统的实际应用中,会由于监控环境光线的变化造成检测到的人脸图像存在不同的阴暗变化,如图1所示。frvt2006测试表明,不同光照条件下人脸识别虽然在性能上比frvt2002有显著提高,但是还没在根本上克服光照对识别率的影响。
人脸表情的多样性
在实际应用过程中,人脸的表情随时都可能发生变化。图2给出了部分表情变化的人脸图像。从图2可以看出,当人的表情发生变化时,可能会引起人脸轮廓以及纹理的变化,同时由于面部肌肉的牵引,面部的特征点的位置也会随之改变。不同的表情引起面部的变化都不同,此外,不同的人的相同表情影响也不相同,因此很难用统一的标准来精确划分各种表情对不同人的影响。
采集人脸的角度多样性
人脸的角度多样性主要是指由于拍摄角度的不同导致检测到的人脸图像的旋转,包括平面旋转和深度旋转。图3列出了部分不同角度拍摄的人脸图像。从图3可以看出,与表情变化对人脸图像的影响相同,拍摄角度的变化同样会导致人脸轮廓的变化,除此之外,由于角度的变化,可能会导致人脸的部分特征无法被正确提取,进一步导致人脸的错误识别。
遮挡问题
即使是非人为故意遮挡,在实际应用时检测到的人脸图像也经常会出现如帽子、眼镜等遮挡物,除了这些,胡子以及刘海的变化也直接影响人脸的特征提取,图4举例给出了出现遮挡的部分人脸图像。当人脸图像发生遮挡时,人脸的很多信息会丢失,导致人脸识别算法出错或失效。
《数据安全法》颁布,上上签电子签名保障企业数据安全
郭明錤:苹果汽车可能最早也要到2025才能上市
安立知推出MS2711E Spectrum Master手持式频谱分析仪
USB 3.1与USB Type-C有何区别
如何检测档案馆环境,推荐档案馆环境监控系统
人脸识别技术自身优势存在两面性 在实际应用中存在难题
广东5G“千元机”最快2020年上市
无人机的核心技术都有哪些,其原理如何
iphone8什么时候上市?iPhone8最新消息,如果所有的创新全部失败?果粉会为一个单纯的oled屏买单吗?
马自达新款SUV起步价竟要14万,网友仔细研究还是值得的
美国移动医疗产业发展领跑全球 正处在加速成长阶段
谷歌新版Flutter应用开发框架已至此在Windows平台上的应用程序
RFID医疗废弃物管理系统整体方案设计
【虹科新品】HK-MR660系列风力涡轮机的叶片加速度监测
Prodigy:全球唯一可以在数据中心、AI和HPC工作负载之间切换的处理器
科学家探索量子点太阳能电池的商业可行性
大联大世平集团推出智能家居安防终端系列解决方案
传华为P50系列手机将会搭载Android、鸿蒙双系统版本
OPPO Share:无需流量 随时极速分享手机文件
联电、IBM 合攻20纳米市场