电源是各种电子设备必不可少的重要组成部分,其性能的优劣直接关系到整个电子系统的安全性和可靠性。单片开关电源集成电路由于其具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,显示出了强大的生命力。
pi公司于2002年9月推出的linkswitch(简称lnk)系列单片电源在正常工作时的开关频率一般在42khz,不仅对前级电路带来很大的电磁兼容问题,而且也对邻近的某些电子设备产生电磁干扰。故必须对整个电路进行电磁兼容(emc)设计,使各个元件在复杂的电磁环境下都能正常运行。
1 lnk的电磁兼容性问题
图1 lnk开关电源电路模型
开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt与高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。开关管的驱动波形、mosfet漏源波形等矩形波在脉冲边缘时的高频变化对开关电源的基本信号造成了干扰。图1为由lnk构成开关电源的电路模型。下面具体分析图1中噪声产生的原因和途径。
1.1 电源线引入的噪声
电源线噪声是电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的,对外表现为传导干扰和辐射干扰。传导干扰分为共模(common mode—cm)干扰和差模(differential mode—dm)干扰。共模干扰定义为任何载流导体与参考地之间的不希望有的电位差,差模干扰定义为任何两个载流导体之间的不希望有的电位差。由于开关电路寄生参数的存在以及开关器件的高频开通和关断,使得开关电源在其输入端产生较大的共模干扰和差模干扰。图2即为图1的共模差模干扰的传播途径。在高频情况下,由于dv/dt很高,激发变压器线圈间以及lnk的寄生电容,从而形成了共模干扰。如图2的黑体虚线所示。在高频情况下,在输入输出的滤波电容上产生很高的di/dt,从而形成了差模干扰。如图2的淡体虚线所示。
图2 共模、差模干扰传播途径
1.2 变压器产生的干扰
高频变压器是开关电源实现能量储存、隔离输出、电压变换的重要元件,在不考虑漏感以及开关动作时间时,高频工作下的mosfet产生的波形应该是标准的方波。但在实际变压器制作时,绕组漏感是不可避免的。由于漏感存在,开关闭合时,原边漏感将储存一定的能量,当开关关断时,储存的能量得到释放,使得开关器件的两端出现电压关断尖峰,与原来的直流高压和感应电压叠加,可使mosfet的漏极电压超过700v(lnk系列的mosfet的漏极击穿电压为700v),有可能影响开关的正常工作甚至损坏lnk。
1.3 输出整流二极管的尖峰干扰
理想的二极管在承受反向电压时截止,不会有反向电流通过。但实际二极管在承受反向电压时,pn结内储存的电荷在反向电场作用下被复合,形成反向恢复电流,它恢复到零点的时间与结电容等因素有关。反向恢复电流在变压器漏感、引线电感以及二极管的结电容的影响下将产生强烈的高频衰减振荡,高频衰减振荡电压与关断电压叠加,将形成一个相当大的关断电压尖峰。这个反向恢复噪声也是开关电源的一个主要干扰源。
1.4 分布电容及寄生参数引起的干扰
开关电源的分布电容主要为开关电源与散热器或外壳之间的分布电容、lnk的漏极与电源线之间的分布电容、变压器初次级之间的分布电容。以上的分布电容都可以传输共模干扰。
在高频下,普通的电阻电容电感都将呈高频寄生特性,这将对其正常工作产生影响。例如,高频工作时,导线寄生电感的感抗显著增加,这将使其变成一根发射线,即成了开关电源中的一个辐射干扰源。
2 emc设计
图3 未考虑emc设计的emi仿真曲线
图3为未考虑emc设计时的emi仿真曲线,根据广泛采用的gb9254中规定的标准曲线,可看出干扰强度超过规定标准了,必须对电路进行相应的抗干扰设计。
emc设计应该从三个方面去考虑:
1) 减小干扰源产生的干扰信号
2) 切断干扰信号的传播途径
3) 增强敏感电路的抗干扰能力2.1 输入侧滤波器设计
电源线干扰可以使用emi滤波器滤除,emi滤波器应是一个只允许直流至工频(50hz,400hz)通过的理想低通滤波器,即从直流至截止频率的通带以最小衰减通过,一般以额定电流下的压降表示;对电磁干扰的阻带,给以尽可能高的衰减;通带和阻带之间的过滤带应尽量的陡。
图4 常规使用的emi滤波器
图5 共模等效电路
图6 差模等效电路
图7加入emi滤波器后的仿真曲线
2.3输出整流二极管尖峰抑制
对输出整流二极管产生的反向恢复噪声,可以通过在二极管两端并联rc缓冲器来抑制,也可以通过在二极管串联一个饱和电感来抑制。并联的rc缓冲器起到一阶滤波器的作用,根据需要滤除高频噪声。串联的饱和电感在整流二极管导通时工作在饱和状态下,相当于导线;在整流二极管关断反向恢复时,工作在电感特性状态下,可以阻碍电流的大幅度变化。
2.4其他措施
1.对整流电路采用无源功率因数校正法来降低谐波成分并提高功率因数;
2.对变压器进行屏蔽来减少其漏感带来的辐射;
3.对电路板进行合理设计,linkswitch应尽量远离交流输入端,尽量减小高频变压器初次回路所包围的面积。
3结语
抑制开关电源的干扰是开发应用型开关电源的一个重要的课题。本文就不同的干扰源提出了针对性的解决方法,并就原电路的emi仿真曲线重新设计了电路的参数,改进后的电路基本符合gb9254标准。文末提出的几种工艺改进的方法都能对开关电源的电磁干扰问题起到进一步的作用,这些都对开关电源的电磁兼容设计具有一定的参考意义
WiFi6路由器的七大测试维度评测,小米、华硕和华为产品最佳
FLIR 全方位的交通监控传感器推动智能交通步上新台阶
魅族MX7什么时候上市?魅族MX7最新消息:魅族MX7京东现身预热价格3999元,联发科要涨价?
丝锥排屑槽型如何去选择?丝锥攻丝过程中常见问题有哪些?
海尔反复提起的物联网生态品牌究竟是什么?
LNK系列单片开关电源集成电路的EMC与EMI设计
诺基亚8新旗舰曝光:骁龙835+骁龙821,有图有真相!
滴滴柳青:未来将推出无人机送菜上门服务
地产大佬开启直线电机建筑机器人和餐饮机器人双驱模式
光照对于植物生长的影响——光合作用和光敏色素
三派势力盘踞智能家居操作系统,谁将在智能系统争夺战中一锤定音?
魅蓝E评测 在同价位中属于上乘
保护电流检测放大器反对过压瞬变-Protect Curren
天太机器人推出新品SCARA 市场售价仅为15000元
苹果天猫旗舰店重新上架iPhone 12/Pro,仍是没现货
诺基亚没有“B计划”,Windows Phone不成功便成仁
关于夜视系统市场的潜力分析
定华电子携G80雷达物位计亮相成都,为西南地区危化企业高质量升级助力!
你不知道的ios10大新功能!
一探究竟|CamsenseM Pro