锂离子电池正负极补锂技术

在锂离子电池首次充电过程中,有机电解液会在石墨等负极表面还原分解,形成固体电解质相界面膜,永久地消耗大量来自正极的锂,造成首次循环的库仑效率偏低,降低了锂离子电池的容量和能量密度。
为了解决这个问题,人们研究了预锂化技术。通过预锂化对电极材料进行补锂,抵消形成sei膜造成的不可逆锂损耗,以提高电池的总容量和能量密度。
一、负极补锂技术
常见的预锂化方式是负极补锂,如锂箔补锂、锂粉补锂等,都是目前重点发展的预锂化工艺。此外,还有利用硅化锂粉和电解锂盐水溶液来进行预锂化的技术。
1 锂箔补锂
锂箔补锂是利用自放电机理进行补锂的技术。金属锂的电位在所有电极材料中最低,由于电势差的存在,当负极材料与金属锂箔接触时,电子自发地向负极移动,伴随着li+在负极的嵌入。
在生长于不锈钢基底的硅纳米线负极上滴加电解液,再与锂金属箔直接接触,进行补锂。对补锂后的负极进行半电池测试,发现: 未补锂的开路电压为1.55v,在0.01~1.00v首次0.1c放电的嵌锂比容量为3800mah/g; 补锂后的硅纳米线开路电压为0.25v,首次嵌锂比容量为1600mah/g。
将锡碳负极与被电解液浸润的锂箔直接接触180min,进行补锂。用半电池测试,补锂后锡碳的不可逆比容量由680mah/g减少到65mah/g。将该负极构成全电池,1.0c倍率在3.1~4.8v下测试的ice接近100% ,且循环稳定,倍率性能较好。
尽管与锂箔直接接触,可以实现负极预锂化,但预锂化的程度不易精确控制。不充分的锂化,不能充分提高 ice; 而补锂过度,可能会在负极表面形成金属锂镀层。
z. y. cao等对锂箔补锂的安全性进行了改善,设计的活性材料/聚合物/锂金属三层结构负极可在环境空气中稳定30~60min,足够负极进行加工。三层结构分别为: 在铜箔上通过电化学沉积的金属锂层,对锂层进行包覆聚甲基丙烯酸甲酯保护层以及活性材料层。
2 稳定化锂金属粉末( slmp)
锂粉补锂是富美实公司提出的,开发的slmp比容量高达3600mah/g,表面包覆了2%~5%的碳酸锂薄层,可在干燥环境中使用。将slmp应用于负极预锂化,主要有两种途径: 在合浆过程中添加,或直接添加到负极片表面。
常规的负极合浆,使用pvdf/nmp或sbr+cmc/去离子水体系,但slmp与极性溶剂不兼容,只能分散于己烷、甲苯等非极性溶剂中,因此不能在常规的合浆过程中直接加入。采用sbr-pvdf/甲苯体系,可将slmp直接混合在石墨电极浆料中。经过slmp对负极的预锂化,在0.01~1.00v、0.05c的条件下,电池的ice从90.6% 提高到96.2%。
与在合浆过程中加入相比,slmp直接加载到干燥的负极表面更简单易行。使用slmp 对硅-碳纳米管负极进行预锂化,将质量分数为3%的slmp/甲苯溶液滴在硅-碳纳米管负极表面,待甲苯溶剂挥发后,进行压片、激活。预锂化后,负极的首次不可逆容量减少了20%~40% 。
3 硅化锂粉
纳米硅化锂粉的尺寸很小,更有利于在负极中的分散。此外,其已处于膨胀状态,循环过程中的体积变化不会对整个电极的结构造成影响。目前,对硅化锂粉补锂添加剂的研究较少,仅有j. zhao等对硅化锂粉的补锂性能和稳定性改善进行了研究。
半电池体系以0.05c在0.01~1.00v充放电,添加15%硅化锂粉后,硅负极的ice从76% 提高到94% ; 添加9%硅化锂粉的中间相炭微球的ice从75%提高到99% ; 添加7%硅化锂粉的石墨负极的ice从87%提高到99%。
4 电解锂盐水溶液进行补锂
无论是使用锂箔、slmp还是硅化锂粉来补锂,都要涉及金属锂的使用。金属锂价格高、活性大,操作困难,储存与运输需要高额的费用用于保护。如果补锂过程不涉及金属锂,可以节约成本,提高安全性能。
可通过在电解池中电解li2so4水溶液来对硅进行补锂,牺牲电极为浸入li2so4中的铜线,补锂反应如式(1)所示:
二、正极补锂技术
典型的正极补锂是在正极合浆过程中添加少量高容量材料,在充电过程中,li+从高容量材料中脱出,补充首次充放电的不可逆容量损失。目前,作为正极补锂添加剂的材料主要有: 富锂化合物、基于转化反应的纳米复合材料和二元锂化合物等。
1 富锂化合物
使用富锂材料li1+xni0.5mn1.5o4来补偿si-c|lini0.5mn1.5o4全电池的不可逆容量损失。使用混合正极的电池以0.33c在3.00~4.78v循环100次的容量保持率为75% ,而使用纯lini0.5mn1.5o4正极的电池仅为51%。
li2nio2也可作为正极补锂添加剂使用,但在空气中的稳定性较差。可使用异丙醇铝对 li2nio2进行改性,合成了在空气中稳定的氧化铝包覆的li2nio2材料,补锂效果优异。
2 基于转化反应的纳米复合材料
尽管富锂化合物作为补锂添加剂取得了一定的效果,但首次的补锂效果仍受限于较低的比容量。基于转化反应的纳米复合材料,由于存在较大的充/放电电压滞后,在电池首次充电过程中可贡献出大量的锂,而嵌锂反应在放电过程中却不能发生。
y.m.sun等研究了m/氧化锂、m/氟化锂、m/硫化锂 (m=co、ni和fe) 作为正极补锂添加剂的性能。
通过合成的纳米co/氧化锂复合材料在以50ma/g在4.1~2.5v循环,首次充电的比容量达619mah/g,放电比容量仅为10mah/g; 在环境空气中暴露8h后,脱锂比容量仅比初始值小了51mah/g,放置2d后,脱锂比容量仍有418mah/g,具有良好的环境稳定性,可与商业化电池的生产过程兼容。
氟化锂的锂含量高、稳定性好,是一种潜在的正极补锂材料。利用转化反应构造的m/lif纳米材料,可以克服 lif 电导率和离子导率低、电化学分解电位高、分解产物有害等问题,使氟化锂成为一种优良的正极补锂添加剂。硫化锂的理论容量达到1166mah/g,但作为补锂添加剂使用,仍有很多问题需要解决,如与电解液的兼容性、绝缘、环境稳定性差等。
尽管较富锂化物有更高的补锂容量,但基于转化反应的纳米复合材料在首次补锂后,会残余没有活性的金属氧化物、氟化物和硫化物等,降低电池的能量密度。
3 二元锂化合物
二元锂化合物的理论比容量要高得多。li2o2、li2o 和li3n的理论比容量分别达到1168mah/g、1797mah/g和2309mah/g,只需要少量的添加,就可实现类似的补锂效果。理论上,这些材料在补锂后的残余物是o2、n2等,可在电池形成sei膜过程中排出的气体。
将商业化的li3n研磨成粒径为1~5μm的粉体,用作补锂添加剂。半电池体系下,添加了1%和2%li3n的licoo2电极,以0.1c在3.0~4.2v的首次充电比容量分别为167.6 mah/g和178.4mah/g,较纯licoo2上升了18.0mah/g、28.7mah/g。
将商业化li2o2与ncm混合使用,补偿石墨负极首次充电过程中的锂损失。混合电极中的ncm起到了活性材料和催化剂的双重作用。为了高效地催化分解li2o2,在正极中加入1%球磨6h得到的ncm。全电池在2.75~4.60v充放电,0.3c可逆比容量为165.4 mah/g,较石墨|ncm全电池提高了 20.5% 。
测试显示,li2o2分解释放的氧气会消耗全电池中有限的li+,导致添加li2o2的全电池存在明显的容量衰减,但在排出气体后,容量即可得到恢复。电池在实际生产过程中的首次充电是在开放体系中进行的,密封前会排出形成sei膜和一些副反应产生的气体,因此可减小o2释放造成的影响。
三、总结
对比两种补锂方法,负极补锂路线补锂试剂的( 锂箔、锂粉和硅化锂粉) 容量高,但操作复杂、对环境要求高; 通过在正极中添加补锂添加剂的正极补锂路线胜在安全稳定性高,与现有电池生产工艺兼容性好。
未来负极补锂技术的研究应着重改进其在电池制造过程中的稳定性,开发与工业化生产相兼容且工艺简单的技术方案; 正极补锂则应着重开发补锂容量高,使用量小,补锂后残余量小的添加剂体系。
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱ibatteryalliance@163.com。    


化纤行业低压无功补偿电能质量问题及解决办法
苹果发布会另一嘉宾 Pokemon Go CEO 登台演示 用apple watch怎么玩
英创信息技术EM9280矢量字库应用简介
对数字化车钥匙开发贡献卓著,恩智浦荣获宝马集团供应商创新奖!
无敌是多么寂寞!小米6外形、价格曝光:1999元配置无敌!
锂离子电池正负极补锂技术
滴滴未来5年布局新能源汽车, 推动新能源汽车普及
以专业致敬真实,创维显示器技术、产品双突破提升用户体验
LTE TDD版三星GALAXY Note II发布,内置骁龙600处理器
Tenda腾达AC11,家庭WiFi防蹭网必备路由
FPGA如何修复时序混乱问题(2)
Mini LED电视涨势凶猛但还缺有人推一把
科大讯飞智能家居生态合作峰会召开 以MORFEI(讯飞魔飞)为核心的讯飞智能家居生态正在形成
富士康与珠海市政府签署合作协议 将对珠海IC晶圆厂进行支援与推展
因取消支付宝渠道美团遭遇反垄断诉讼,是正常商业行为还是侵犯消费者选择
高速差分接口及共模滤波与保护的需求
印度可穿戴设备连续增长 小米手环占据了一半的出货量
如何利用FPAG开发板搭建LEON2 SOC开发平台
PCL春季赛揭幕战前瞻:面对强敌,4AM该如何突围
SCL编程之触摸屏监控所有PLC的IO信号