大功率DC/DC变换器电磁兼容性研究

本文从大功率dc/dc变换器主要电磁干扰源及抑制措施、控制电路板的信号隔离以及软件程序的抗干扰设计三个方面对fcev用大功率dc/dc变换器的电磁兼容性进行了研究,有效的解决了fcev用大功率dc/dc变换器电磁干扰问题。
引言
目前,燃料电池电动汽车(fcev)成为我国汽车科技创新主攻方向。燃料电池电动汽车动力系统主要由燃料电池发动机,dc/dc变换器,蓄电池,电机控制器(变频器)及电机,整车控制器,数据采集系统及can总线组成,如图1所示。其中dc/dc变换器可以对燃料电池的输出进行控制及能量的传递与转换,成为燃料电池电动汽车关键零部件之一。在燃料电池电动汽车运行过程中,dc/dc变换器所处的电磁环境十分复杂,各种形式的电磁干扰很多,严重影响了dc/dc变换器的正常运行。因此,研究fcev用dc/dc变换器的电磁兼容性对dc/dc变换器乃至燃料电池电动汽车的可靠运行具有重要意义。
大功率dc/dc变换器主要干扰源及电磁兼容设计
fcev用dc/dc变换器是大功率变换装置,其电磁兼容性在整个fcev电磁环境中具有重要影响。fcev用dc/dc变换器工作时对外界产生强大的电磁干扰,不仅对整个fcev系统造成干扰,而且也会影响dc/dc变换器自身控制系统的正常工作。因此为了提高整个fcev系统性能,必须对fcev用dc/dc变换器的电磁兼容性进行研究,对其产生的电磁干扰(emi)进行有效的抑制。
大功率dc/dc变换器主要干扰源
fcev用dc/dc变换器的功率一般比较大,通常选择igbt为功率开关管。功率开关管igbt工作过程中产生高的du/dt和di/dt以及浪涌电流和尖峰电压[1],这是fcev用大功率dc/dc变换器产生电磁干扰最根本的原因。另外功率开关管开通和关断瞬间,由于分布电感和分布电容的存在,电感电流容易发生高频振荡,这些因素都会产生强大的电磁干扰,这在fcev用大功率dc/dc变换器中表现的尤为明显。这种电磁干扰严重影响整车控制器与can通信,导致can通讯频繁报错,无法正常通讯。can通讯受干扰后的传输波形如图2(a)所示。从图中可以明显看到,变换器开关噪音叠加在can通讯脉冲上,并且幅度很大。此外,严重的电磁干扰也会使大功率dc/dc变换器输出纹波过大,纹波过大直接影响大功率dc/dc变换器的性能[2]。图2(b)是用示波器采集到的变换器未经滤波处理的输出电压波形,从图中可以看到,输出电压上叠加了大量的开关噪音。
大功率dc/dc变换器电磁干扰的抑制措施
目前,抑制大功率dc/dc变换器电磁干扰的主要措施有减小干扰源的电磁干扰强度、切断电磁干扰传播途径、敏感元器件合理布局以及屏蔽和信号接地设计等。
● 减小干扰源的电磁干扰强度
大功率dc/dc变换器产生电磁干扰的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率(du/dt和di/dt)。最常用的方法就是增加吸收电路[3],吸收电路能够抑制电磁干扰,其基本原理就是开关管关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。软开关柔性换流技术是近年来研究的热点[4],在fcev用大功率dc/dc变换器中,采用无源谐振软开关柔性换流技术,可以大大降低开关过程中的du/dt和di/dt,不仅减小了开关损耗,而且还大大降低了电磁干扰。另外通过优化功率开关管igbt驱动参数,合理选择功率开关管igbt的驱动电压和栅极驱动电阻,也可以降低大功率dc/dc变换器电磁干扰。
● 切断电磁干扰传输途径
fcev用大功率dc/dc变换器产生的电磁干扰以传导干扰为主。目前最常用的方法就是在dc/dc变换器输入和输出端加装滤波电容器。如图3,为了减小fcev用大功率dc/dc变换器对can通讯的干扰,在变换器输入输出端加适量的接地电容,can通讯波形得到有效改善。
在fcev用大功率dc/dc变换器中,输出电压或电流纹波是电源的重要指标。图4在大功率dc/dc变换器的输出端连接clc滤波器后,变换器输出电压波形平稳,开关噪音减小,滤波效果十分明显。
此外,在fcev用大功率dc /dc变换器中开关管igbt以十几千赫的频率开通和关断,电路中可能产生高次谐波电流,影响燃料电池的输出电压。因此dc/dc变换器输入和输出端通常并联电容(电解电容与无感电容并联)。无感电容可以滤除线路中由于谐振而产生的高频辐射干扰,而电解电容用来稳定燃料电池输出电压及降低辐射强度,同时减小dc/dc变换器输出电压纹波[5,6]。
● 敏感元器件合理布局
fcev用大功率dc/dc变换器中包含很多敏感元器件(比如电流霍尔传感器),这些敏感元器件对电磁干扰非常敏感。在fcev用大功率dc/dc变换器主电路实际布局中,通常将敏感元器件布局在离功率开关管igbt、续流二极管和高频变压器尽量远的地方、同时将信号线绞合并缩短布线距离,这样可以大大降低电流信号的噪音,提高系统的控制性能。同时,在fcev用大功率dc/dc变换器布线方面,也要尽量将敏感信号线路远离功率开关管igbt、续流二极管和高频变压器等强干扰源。同时,不能与高压交流信号和高频脉冲信号放置在一起,应保证适当的距离。
● 屏蔽和信号接地设计
在燃料电池电动汽车中,大功率dc /dc变换器和其他控制电路、电机控制器等设备安置在一起,相互之间要辐射电磁能量,通常采用外壳屏蔽和缝隙屏蔽结合的屏蔽方式来抑制辐射干扰[7]。此外,信号接地[8]也可以消除外界或其他设备对fcev用大功率dc/dc变换器的干扰,其关键是选择恰当的电路公共参考点以及接地线路的合理布局。
大功率dc/dc变换器控制电路板抗干扰设计
控制电路是大功率dc/dc变换器很重要的组成部分之一,良好的电路板设计可以大大提高电路板的抗干扰性。
大功率dc/dc变换器控制电路主要由电源模块、采样信号、通讯信号以及驱动模块组成,为防止相互间信号干扰,在设计电路的时候将其隔离,如图5所示。
在fcev用大功率dc/dc变换器控制电路中,电源模块通常采用的是隔离型dc/dc模块,实现了电源输入端和输出端的电气隔离。采样信号隔离包括电流采样隔离和电压采样隔离。通讯信号隔离采用光电耦合器hcpl0600来实现了can总线输入输出信号的光电隔离。fcev用dc/dc变换器输出功率较大,所以选用igbt为功率开关管,而igbt不同规格对应不同的驱动隔离方法。一般小功率igbt采用tlp250驱动隔离,中等功率igbt驱动多采用exb841/840系列驱动隔离模块,而大功率或超大功率igbt可采用2sd315a模块来实现驱动隔离。实践证明,将各个功能模块隔离,可以大大降低控制电路各个模块之间的相互干扰,保证了信号传递的可靠性及信号处理的准确性。
大功率dc/dc变换器软件程序抗干扰设计
大功率dc/dc变换器通常采用dsp控制,软件程序的抗干扰性设计同样非常重要。大功率dc/dc变换器软件抗干扰主要从两个方面来考虑:dsp抗干扰技术和软件滤波抗干扰技术,前者主要是抵御因干扰造成的程序“跑飞”,后者主要是消除信号中的干扰以提高系统精度。
dsp抗干扰技术
在fcev用大功率dc/dc变换器的运行中,一旦控制系统的dsp受干扰,将会导致非常严重的后果,甚至使整个燃料电池电动汽车动力系统瘫痪,所以在设计实际系统时,均考虑万一出现干扰时,dsp系统自身的抵御措施。
为了提高dsp的抗干扰性,在新型dsp控制器(如tms320lf2407a)内部集成了看门狗定时器模块(wdt)[9],用于程序运行监视,是一种软硬件结合的抗程序跑飞措施。wdt硬件主体是一个用于产生定时t的计数器或单稳触发器,该计数器或单稳触发器基本独立运行,其定时输出端接至dsp的复位线,而其定时清零则由dsp软件控制。
在正常情况下,程序启动wdt后,并在一定时时间t内将其清零复位,这样wdt的定时溢出就不会发生,如同睡眠一般不起任何作用。在受到干扰的异常情况下,cpu时序逻辑被破坏,程序执行混乱,不可能周期性地将wdt清零,这样当wdt的定时溢出时,其输出使dsp系统复位,cpu摆脱因一时干扰而陷入的瘫痪状态。
软件滤波技术
本文采用软件滤波技术对fcev用大功率dc/dc变换器的采样数据进行处理。大功率dc/dc变换器将采集到的模拟量经过滤波后送至dsp控制器的a/d转换通道,通过软件编程启动a/d转换,将取得的采样值存入a/d内置寄存器中。
dsp周围的干扰信号多呈毛刺形状,作用时间比较短。dsp对模拟量进行采样时,可对同一模拟量多次进行a/d转换,并将多次采样值暂存在内部数据区中。当多次采样结束后,采用数据平滑滤波算法和多次采样求均值的方法进行数据处理,这样可以增强软件程序抗干扰性,提高数据采样的准确度和精度。
结语
采用上述电磁兼容设计的fcev用大功率dc/dc变换器现已成功应用在由清华大学研制的燃料电池城市客车上,各项技术指标均满足整车使用要求,运行效果良好。

叽里呱啦APP的注册登录方式解析
SIM卡座连接器的结构有哪些?
三星Note 8美的太刺激,美版将于24号匆忙上市!
三星全新 8K 电视将兼容高级多声道音频
高等级公路路面裂缝类病害轮廊提取的算法研究
大功率DC/DC变换器电磁兼容性研究
户外电源600W并机版,用新技术连接每一个户外场景
苏宁小biu空调Pro正式发布 能效达到5.0
ARM体系结构中出现异常时该如何处理
中端市场是中国手机市场竞争重点,三星四机齐出再攻中国手机市场
性能轻松搞定小米6,努比亚Z17明日发布:爱潮流,追时尚!
矿难救援的有力工具,红外热像仪在煤炭行业中有哪些应用?
华为手机的五大缺点 最后一个是国产手机通病
微雪电子LPC Cortex M4开发板 Core4357简介
苹果发布HomePod mini智能音箱,采用球形体积,配置S5芯片
高频外围与射频信号测量认证技术与市场趋势
百度CTO王海峰揭秘中国AI的今昔与前路 十年产业实践的伟大航路
巧用纽扣作拉杆天线槽
霍尔电压与哪些因素有关 霍尔电压传感器的特点及工作原理解析
怎样避免在物联网领域犯错误