摘要:本文以x波段非接触式探针为设计对象,参照单极子微带天线设计方法,将50ohm微带线延伸出去,形成c形环结构,并将这部分的地去处,达到圈住信号传输线周围的磁场构成磁耦合的目的。为了加强磁耦合,在c形环附近添加去地的反向c形微带线结构以加强耦合,并调节耦合平坦度。根据仿真模型制作了实物,探针置于被测微带传输线上方可获得耦合信号,在x波段范围内,耦合量在-19~-23db之间。
1引言
微波组件向着集成、小型化方向发展,很多组件采用裸芯片工艺进行贴装(比如t/r组件),常规的测试排故方法已难以满足现代化测试要求,比如射频板通过焊接半截线引出信号测试的方法,已完全不适合高集成度、高净化度的组件测试。据此,本文开展了x波段非接触式射频探针的研究工作,以利于微波组件的调试[1]。
信号在微带传输线上传输时,在其周围存在闭环的磁场,当外部线圈或外部微带线圈住一定磁通量时,变化的磁场就产生变化的电流,进而就可通过耦合的方式探测出信号。相比于半截线测试射频信号时,这种磁耦合方式无需额外接地。一般情况下,当该非接触式探针与被测对象接触时,短路危险系数较低(与微带线不直接接触)[2]。另外,x波段信号耦合量小于-15db时,对主路信号无影响,在探测信号的同时不影响系统正常工作[3,4]。
本探针采用的微带形式借鉴单极子天线设计方法,将用于探测的微带线底部的地去掉,从而形成开放的电磁耦合结构。调整用于探测的微带线的长度与宽度可将空间波阻抗变换到50ohm,从而实现匹配。本文创新点在于采用c形环达到空间磁耦合目的,从而将近场能量转化为电流,达到测试信号功率的目的。本文还有一个创新点在于采用互补磁耦合环结构,不仅加强了耦合,还可以调节耦合平坦度。该微带探针不仅可以应用于x波段信号探测,对于其他频段信号也可以探测(耦合度需要测试),因此该探针也能作为测试电磁泄漏的工具,在电磁空间探测领域具有一定的应用价值。该探针所采用的结构能被其他频段射频探针设计借鉴,是实用性很强的产品。
2 c形缺地微带探针仿真
2.1 类单极子c形缺地探针设计
四分之一波长单极子天线要求延伸出的辐射电长度为四分之一波长,其辐射场分为近场与远场,近场是比较复杂的电磁耦合转换环境。本节所设计的类单极子c形缺地探针长度也为四分之一波长,利用近场的磁生电的原理进行信号探测。其结构图如下图1所示,主体由微带50ohm馈线和c形缺地线组成:
图1 c形缺地探针结构示意图
c形缺地线电长度为四分之一波长:
其中,c为光速,f为工作频率,er为相对介电常数。
该结构的探针耦合度主要取决于与探测对象之间的距离以及c形环的开口大小。注意:该探针c形环必须与所测对象平行!
下面仿真分析了探测对象与c形环的距离对耦合度的影响。当c形环与背测微带信号线平行相距1mm、1.2mm、1.4mm时,其耦合度在10ghz分别达到-19.45db、-21.74db、-23.46db,其仿真结果如下图2所示:
(1)相距1mm
(2)相距1.2mm
(3)相距1.4mm
图2探针与被测对象的不同耦合距离的仿真结果
仿真结果表明,当随着耦合间距的加大,耦合度也在减小,而且x波段耦合度不平坦,达到7db以上的幅度波动。由于c形环长度较小,且与频率相关,因此本节不对c形环的长度做相关仿真分析。
2.2增强型c型探针设计
由上节分析可知,c形环探测信号的耦合度受制于耦合间距。在间距达到1mm的情况下,在10ghz才达到-19.45db。为了增强耦合度,本节在c形环旁边添加了与它相反的c形环,达到电磁耦合互补,增加耦合度的作用。其结构示意图如下图3所示。
图3 增强型c形缺地探针结构示意图
添加的c形环受到相同的磁场耦合,产生与主线相反的电流,从而对主线进行二次耦合,增强了主线的耦合度。仿真了1mm耦合间距的耦合度,仿真结果如下图4所示。在10ghz耦合-18.72db,x波段耦合度-17.25~-19.27db,波动2db左右。
图4 增强型c形缺地探针1mm耦合间距仿真结果
由仿真结果分析可知,添加的反向c形环不仅增加了耦合度,而且具备调节耦合平坦度的功能。
2.3非接触式c形微带探针实测
根据上节仿真结果制作了实物,如下图5所示。下方微带直通线与探针平行耦合的间距为1mm,测得x波段探针耦合度为-19db~-23db,与仿真值偏离不大。
图5 c形微带探针实物图
3结论
针对微波组件的探测需求,提出一种x波段非接触式微带探针结构,以便于信号检测。本探针采用的微带形式借鉴单极子天线设计方法,将用于探测的微带线底部的地去掉,从而形成开放的电磁耦合结构。调整用于探测的微带线的长度与宽度可将空间波阻抗变换到50ohm,从而实现匹配。该结构形式易于实现,对工艺无特殊要求,可适合于微组装产品的测试排故。
参考文献
1arriola w a, et al. wideband 3 db branchline co upler basedon ( / 4 open circuited coupled lines [ j] . ieee microwaveandwireless component letters, 2011, 21( 9) : 486- 488.
2reed j.and wheeler g..j..a method ofanalysis of symmetrical four-port networks[j].ieee transactions on microwavetheory and techniques,1956,50(4):246-252
3shry-sann liao,pou-tou sun,nien-chungchin,and jen-tee peng,“a novel compact-sizebranch-linecoupler,”ieeetrans.microw.theorytech.,vol.15,no.9,pp.588–590,sep.2005.
4陈振国等. 微波技术基础与应用. 人民邮电出版社.
分享一种STM32单片机空调温度控制系统设计方案
基于TDA2040的汽车立体声放大器电路
虹科方案 | 医药行业专用ECOLOG即插即用室内和设施环境监控系统
超级计算机的下一步 中国需要打赢应用之战
浅谈Digi 900HP模块的运作方式
开展了X波段非接触式射频探针的研究工作,以利于微波组件的调试
关于晶振老化的问题
新三板已经不能满足其融资需要 想要启动新的资本市场计划
配电高频变压器的分类是怎样的
E1 Operation of Dallas Semicon
人脸识别:慢慢从噱头变为刚需
苹果屏下指纹专利曝光 iPhone 13或应用
爱奇艺上诉被驳回 将维持原判
57%的飞机乘客偏爱人脸识别技术登机,而非护照或登机证
为什么不能随便把币放在交易所里
依旧“打磨”联发科P10,魅族新机魅蓝5x曝光!
虹科HK-MR340系列传感器产品介绍
Trifo Max扫地机器人高清图集
智能大棚控制系统将成为高效农业的一个重要组成部分
智能化热风无纺布瑕疵在线检测仪的优点有哪些