为什么4.7μF电容变成了0.33μF电容?

几年以前,经过用瓷片电容的25年多工作之后,我对它们有了新的领悟。那时我正在忙于做一个led灯泡驱动器,当时我项目中一个rc电路的时间常数显然是有问题。
我第一个假设是:电路板上某个元件值不正确,于是我测量用作一个分压器的两只电阻,但它们都没有问题。我把电容从电路板上拆下来测量,也没有问题。为了进一步确认,我测量并装上了新电阻和新电容,给电路上电,检查发现基本运行正常,然后看更换元件是否解决了rc电路时间常数问题。但答案是否定的。
我是在自然的环境下测试电路:在外壳内,电路处于外壳内,模拟了一个屋顶照明灯的“罐子”。有时元件温度会升到100多摄氏度。虽然我重新测试rc电路的时间很短,一切仍非常烫手。
显然,我的下一个结论是:问题在于电容的温度变化。但是我自己都怀疑这个结论,因为我用的可是x7r电容,根据我的记忆,这种电容最高可工作到+125°c,变化也只有±15%.我信任我的记忆力,但是为了保险起见,我重新查看了所使用电容的数据表。
背景报告
表1给出了用于不同种类瓷片电容的字母与数字,以及它们各自的含义。表格描述了class ii和class iii两种瓷片电容。这里不谈太多细节,class i级电容包括常见的cog(npo)型;这种电容的体积效率不及表格中的两种电容,但是它在多变环境条件下要稳定得多,而且不会出现压电效应。相反,表格中的电容具有广泛多变的特性,它们能够扩展并承受所施加的电压,但有时会产生可听到的压电效应(蜂鸣声或振铃声)。
在给出的多种电容类型中,据我的经验,最常用的是x5r、x7r,还有y5v.我从来没用过y5v,因为它们在整个环境条件区间内,会表现出极大的电容量变化。
当电容公司开发产品时,他们会通过选择材料的特性,使电容能够在规定的温度区间(第一个和第二个字母),工作在确定的变化范围内(第三个字母;表1)。我正在使用的是x7r电容,它在-55°c到+125°c之间的变化不超过±15%.所以,要么我是用了一批劣质电容,要么我的电路其它部分有问题。
不是所有的x7r电容都一样
既然我的rc电路时间常数问题无法用特定温度变量来解释,就必须深入研究。看着我那支电容的容量与施加电压的数据,我惊奇的发现,电容随着设置条件的变化量是如此之大。我选择的是一只工作在12v偏压下的16v电容。数据表显示,我的4.7-μf电容在这些条件下通常是提供1.5μf的容量。现在,就完全能解释rc电路的问题了。
数据表显示,如果我把电容封装尺寸从0805增加到1206,在规定条件下的典型电容量将是3.4μf.这表明有进一步研究的必要。
我发现村田制作和tdk在网站上提供了很好的工具,能够绘出不同的环境条件下的电容量变化。我对不同尺寸和额定电压的4.7μf电容做了一番研究。图1数据是取自村田的工具,针对几种不同的4.7μf瓷片电容。我同时观察了x5r和x7r两种型号,封装尺寸从0603到1812,额定电压从6.3到25v dc.首先我注意到,随着封装尺寸的增加,随所施加直流电压的电容量变化下降,并且幅度很大。
图一本图描绘了所选4.7-μf电容上直流电压与温度变化量的关系,如图所示,随着封装尺寸的增加,电容量随施加电压的而大幅度下降。
第二个有趣的点是,对于某个给定的封装尺寸和瓷片电容类型,电容的额定电压似乎一般没有影响。于是我估计,如将一只额定25v的电容用于12v电压,则其电容变化量要小于同样条件下的额定16v电容。看看1206封装x5r的曲线,显然额定6.3v元件的性能确实优于有较高额定电压的同类品种。 如果我们检验更大范围的电容,就会发现这种情况很常见。对于我研究的那些电容样本集,并没有展示出普通瓷片电容应有的表现。
观察到的第三个问题是:对于同样的封装,x7r电容的温度敏感度要高于x5r电容。我不知道这是否普遍适用,但是在我的实验里似乎是这样。 从图中可以看出,表2显示了x7r电容在12v偏压后,电容量的减少量。注意,随着电容封装尺寸逐步增加到1210,电容量有着稳步的增长,但是超过这个尺寸就没有多大改变了。
选择正确的电容
在我的例子中,我为4.7μf的x7r电容选择了最小的可用封装,因为尺寸是我项目的一个考虑因素。由于本人的无知,因而假设了任何一种x7r都与其它x7r有相同的效果;而显然,情况并非如此。为使我的应用得到正确的性能,我必须采用某种更大的封装。
我真的不想用1210封装。幸运的是,我可以把所用电阻值增大5x,因而电容量减少到了1μf。
图2是几种16v、1μf x7r电容与16v、4.7μf x7r电容的电压特性图。0603的1μf电容和0805的4.7μf电容表现相同。0805和1206的1μf电容性能都略好于1210的4.7μf电容。因此,使用0805的1μf电容,我就可以保持电容体积不变,而偏压下电容只降到额定量的大约85%,而不会到30%。
但我还是困惑。我曾认为所有x7r电容都应该有着相同的电压系数,因为所用的电介质是相同的,都是x7r。所以我向一位同事,日本tdk公司的现场应用工程师克里斯?伯克特请教,他也是瓷片电容方面的专家。他解释说很多材料都能满足“x7r”资格。事实上,任何一种材料,只要能使器件满足或超过x7r温度特性(即在-55°c到+125°c范围内,变化在±15%),都可以叫做x7r。伯克特也解释说,并没有专门针对x7r电容或任何其他类型瓷片电容的电压系数规范。
这是一个关键的要点,因此我要再重复一遍。只要一个电容满足了温度系数规范,不管其电压系数多么糟糕,厂商都可以把这个电容叫做x7r电容(或者x5r,或其他任何类型)。这个事实印证了任何一位有经验电器工程师都知道的那句准则(双关语):去读数据表!
由于厂商越来越倾向于小型元件,所以他们不得不对使用的材料作出妥协。为了用更小的尺寸获得所需要的体积效率,他们被迫接受了更糟糕的电压系数。当然,有信誉的制造商会尽量减少这种折中的副作用。
结论是,在使用小封装瓷片电容的时候(实际在使用任何元件的时候),阅读数据表都极为重要。但很遗憾,通常我们见到的数据表都很简短,几乎无法为你做决定提供任何需要的信息,所以你必须坚持让制造商给出更多的信息。
那么被我否定的y5v电容怎么样呢?纯为好玩,我们来研究一个普通的y5v电容。我选择的是一个4.7μf、0603封装的额定6.3v电容)我不会提制造厂商,因为它的y5v电容并不劣于任何其他厂商的y5v电容),并查看它在5v电压和+ 85° c下的规格。在5v电压下,典型的电容量比额定值低92.9%,或为0.33 μf。
这就对了。如果给这个6.3v的电容加5v偏压,则其电容量要比额定值小14倍。 在0v偏压+85°c时,电容量会减少68.14%,从4.7μf降至1.5μf。现在,你可能觉得,在5v偏压下,电容量会从0.33降至0.11μf。幸运的是,两个效应并没有以这种方式结合到一起。在这个特例中,室温条件下加5v偏压的电容变化要差于+85°c。
明确地说,这个电容在0v偏压下,电容量会从室温的4.7μf降到+85°c的1.5μf;而在5v偏压下,电容量会从室温的0.33μf增加到+85°c的0.39μf。这个结果应该让你信服了,真的有必要仔细查看元件规格。
着手处理细节
这次教训之后,我再也不会向同事或消费者推荐某个x7r或x5r电容了。我会向他们推荐某家供应商的某种元件,而我已经检查过该元件的数据。我也提醒消费者,在考虑制造的替代供应商时,一定要检查数据,不要遭遇我的这种问题。
你可能已经察觉到了更大的教训,那就每次都要阅读数据表,无一例外。如果数据表上没有足够的信息,要向厂商要具体的数据。也要记住,瓷片电容的命名x7r、y5v等跟电压系数毫无关系。工程师们必须检查了数据才能知道(真正地知道)某种电容在该电压下的性能如何。
最后请记住:当我们持续疯狂的追求更小尺寸时,它也成为了每天都会遇到的问题。


当下芯片市场行情:铁打的缺货,流水的涨价函
晶能光电CEO王敏博士荣获【创新中国•2018年度评选“优秀企业家”】奖
采购国产连接器时应该有哪些方面的考虑
ADAS、新能源引领汽车测试根本巨变,NI平台化方案一统多领域融合需求
BUCK电路的占空比与输入电压、负载电流的变化有何关系?
为什么4.7μF电容变成了0.33μF电容?
房地产行业液晶拼接应用系统解决方案
华为首次发布高性能激光雷达产品和解决方案
苹果新学期优惠活动今日上线 购买Mac/iPad送千元Beats耳机
小型基站部署面临的行业运营挑战
步进电机的噪音来源,如何使步进电机完全静音
把GPIO 通过sysfs导出到用户空间的方法
该来的还是来了,高通3186亿元巨资收购恩智浦
小型多口65W快充头GaN-TurnKey方案强势上线
一种实现计时器变为倒计时器的设计方案
微软游戏部门裁员1900人 或因暴雪新项目奥德赛被砍
30款IDEA宝贝插件
DEVICENET转MODBUS-TCP网关应用案例
小米计划在未来五年内在人工智能,5G和“物联网”技术上投资70亿美元
台积电5纳米良率突破八成 下季量产可以期待