fft(fast fourier transform),快速傅立叶变换,是一种 dft(离散傅里叶变换)的高效算法。 在以时频变换分析为基础的数字处理方法中,有着不可替代的作用。
fft 原理
公式推导
dft 的运算公式为:
其中,
将离散傅里叶变换公式拆分成奇偶项,则前 n/2 个点可以表示为:
同理,后 n/2 个点可以表示为:
由此可知,后 n/2 个点的值完全可以通过计算前 n/2 个点时的中间过程值确定。 对 a[k] 与 b[k] 继续进行奇偶分解,直至变成 2 点的 dft,这样就可以避免很多的重复计算,实现了快速离散傅里叶变换(fft)的过程。
算法结构
8 点 fft 计算的结构示意图如下。
由图可知,只需要简单的计算几次乘法和加法,便可完成离散傅里叶变换过程,而不是对每个数据进行繁琐的相乘和累加。
重要特性
(1) 级的概念
每分割一次,称为一级运算。
设 fft 运算点数为 n,共有 m 级运算,则它们满足:
每一级运算的标识为 m = 0, 1, 2, ..., m-1。
为了便于分割计算,fft 点数 n 的取值经常为 2 的整数次幂。
(2) 蝶形单元
fft 计算结构由若干个蝶形运算单元组成,每个运算单元示意图如下:
蝶形单元的输入输出满足:
其中,。
每一个蝶形单元运算时,进行了一次乘法和两次加法。
每一级中,均有 n/2 个蝶形单元。
故完成一次 fft 所需要的乘法次数和加法次数分别为:
(3) 组的概念
每一级 n/2 个蝶形单元可分为若干组,每一组有着相同的结构与因子分布。
例如 m=0 时,可以分为 n/2=4 组。
m=1 时,可以分为 n/4=2 组。
m=m-1 时,此时只能分为 1 组。
(4) 因子分布
因子存在于 m 级,其中 。
在 8 点 fft 第二级运算中,即 m=1 ,蝶形运算因子可以化简为:
(5) 码位倒置
对于 n=8 点的 fft 计算,x(0) ~ x(7) 位置对应的 2 进制码为:
x(000), x(001), x(010), x(011), x(100), x(101), x(110), x(111)
将其位置的 2 进制码进行翻转:
x(000), x(100), x(010), x(110), x(001), x(101), x(011), x(111)
此时位置对应的 10 进制为:
x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)
恰好对应 fft 第一级输入数据的顺序。
该特性有利于 fft 的编程实现。
fft 设计
设计说明
为了利用仿真简单的说明 fft 的变换过程,数据点数取较小的值 8。
如果数据是串行输入,需要先进行缓存,所以设计时数据输入方式为并行。
数据输入分为实部和虚部共 2 部分,所以计算结果也分为实部和虚部。
设计采用流水结构,暂不考虑资源消耗的问题。
为了使设计结构更加简单,这里做一步妥协,乘法计算直接使用乘号。 如果 fft 设计应用于实际,一定要将乘法结构换成可以流水的乘法器,或使用官方提供的效率较高的乘法器 ip。
蝶形单元设计
蝶形单元为定点运算,需要对旋转因子进行定点量化。
借助 matlab 将旋转因子扩大 8192 倍(左移 13 位),可参考附录。
为了防止蝶形运算中的乘法和加法导致位宽逐级增大,每一级运算完成后,要对输出数据进行固定位宽的截位,也可去掉旋转因子倍数增大而带来的影响。
代码如下:
`timescale 1ns/100ps/**************** butter unit *************************xm(p) ------------------------> xm+1(p) - -> - - - - - - ->xm(q) ------------------------> xm+1(q) wn -1*//////////////////////////////////////////////////////module butterfly ( input clk, input rstn, input en, input signed [23:0] xp_real, // xm(p) input signed [23:0] xp_imag, input signed [23:0] xq_real, // xm(q) input signed [23:0] xq_imag, input signed [15:0] factor_real, // wnr input signed [15:0] factor_imag, output valid, output signed [23:0] yp_real, //xm+1(p) output signed [23:0] yp_imag, output signed [23:0] yq_real, //xm+1(q) output signed [23:0] yq_imag); reg [4:0] en_r ; always @(posedge clk or negedge rstn) begin if (!rstn) begin en_r <= 'b0 ; end else begin en_r <= {en_r[3:0], en} ; end end //=====================================================// //(1.0) xm(q) mutiply and xm(p) delay reg signed [39:0] xq_wnr_real0; reg signed [39:0] xq_wnr_real1; reg signed [39:0] xq_wnr_imag0; reg signed [39:0] xq_wnr_imag1; reg signed [39:0] xp_real_d; reg signed [39:0] xp_imag_d; always @(posedge clk or negedge rstn) begin if (!rstn) begin xp_real_d <= 'b0; xp_imag_d <= 'b0; xq_wnr_real0 <= 'b0; xq_wnr_real1 <= 'b0; xq_wnr_imag0 <= 'b0; xq_wnr_imag1 <= 'b0; end else if (en) begin xq_wnr_real0 <= xq_real * factor_real; xq_wnr_real1 <= xq_imag * factor_imag; xq_wnr_imag0 <= xq_real * factor_imag; xq_wnr_imag1 <= xq_imag * factor_real; //expanding 8192 times as wnr xp_real_d <= {{4{xp_real[23]}}, xp_real[22:0], 13'b0}; xp_imag_d <= {{4{xp_imag[23]}}, xp_imag[22:0], 13'b0}; end end //(1.1) get xm(q) mutiplied-results and xm(p) delay again reg signed [39:0] xp_real_d1; reg signed [39:0] xp_imag_d1; reg signed [39:0] xq_wnr_real; reg signed [39:0] xq_wnr_imag; always @(posedge clk or negedge rstn) begin if (!rstn) begin xp_real_d1 <= 'b0; xp_imag_d1 <= 'b0; xq_wnr_real <= 'b0 ; xq_wnr_imag <= 'b0 ; end else if (en_r[0]) begin xp_real_d1 <= xp_real_d; xp_imag_d1 <= xp_imag_d; //提前设置好位宽余量,防止数据溢出 xq_wnr_real <= xq_wnr_real0 - xq_wnr_real1 ; xq_wnr_imag <= xq_wnr_imag0 + xq_wnr_imag1 ; end end //======================================================// //(2.0) butter results reg signed [39:0] yp_real_r; reg signed [39:0] yp_imag_r; reg signed [39:0] yq_real_r; reg signed [39:0] yq_imag_r; always @(posedge clk or negedge rstn) begin if (!rstn) begin yp_real_r <= 'b0; yp_imag_r <= 'b0; yq_real_r <= 'b0; yq_imag_r <= 'b0; end else if (en_r[1]) begin yp_real_r <= xp_real_d1 + xq_wnr_real; yp_imag_r <= xp_imag_d1 + xq_wnr_imag; yq_real_r <= xp_real_d1 - xq_wnr_real; yq_imag_r <= xp_imag_d1 - xq_wnr_imag; end end //(3) discard the low 13bits because of wnr assign yp_real = {yp_real_r[39], yp_real_r[13+23:13]}; assign yp_imag = {yp_imag_r[39], yp_imag_r[13+23:13]}; assign yq_real = {yq_real_r[39], yq_real_r[13+23:13]}; assign yq_imag = {yq_imag_r[39], yq_imag_r[13+23:13]}; assign valid = en_r[2];endmodule顶层例化
根据 fft 算法结构示意图,将蝶形单元例化,完成最后的 fft 功能。
可根据每一级蝶形单元的输入输出对应关系,依次手动例化 12 次,也可利用 generate 进行例化,此时就需要非常熟悉 fft 中“组”和“级”的特点:
(1) 8 点 fft 设计,需要 3 级运算,每一级有 4 个蝶形单元,每一级的组数目分别是 4、2、1。
(2) 每一级的组内一个蝶形单元中两个输入端口的距离恒为 (m 为级标号,对应左移运算 1<
(3) 每一级相邻组间的第一个蝶形单元的第一个输入端口的距离为 (对应左移运算 2<例化代码如下。
其中,矩阵信号 xm_real(xm_imag)的一维、二维地址是代表级和组的标识。
在判断信号端口之间的连接关系时,使用了看似复杂的判断逻辑,而且还带有乘号,其实最终生成的电路和手动编写代码例化 12 个蝶形单元的方式是完全相同的。 因为 generate 中的变量只是辅助生成实际的电路,相关值的计算判断都已经在编译时完成。 这些变量更不会生成实际的电路,只是为更快速的模块例化提供了一种方法。
timescale 1ns/100psmodule fft8 ( input clk, input rstn, input en, input signed [23:0] x0_real, input signed [23:0] x0_imag, input signed [23:0] x1_real, input signed [23:0] x1_imag, input signed [23:0] x2_real, input signed [23:0] x2_imag, input signed [23:0] x3_real, input signed [23:0] x3_imag, input signed [23:0] x4_real, input signed [23:0] x4_imag, input signed [23:0] x5_real, input signed [23:0] x5_imag, input signed [23:0] x6_real, input signed [23:0] x6_imag, input signed [23:0] x7_real, input signed [23:0] x7_imag, output valid, output signed [23:0] y0_real, output signed [23:0] y0_imag, output signed [23:0] y1_real, output signed [23:0] y1_imag, output signed [23:0] y2_real, output signed [23:0] y2_imag, output signed [23:0] y3_real, output signed [23:0] y3_imag, output signed [23:0] y4_real, output signed [23:0] y4_imag, output signed [23:0] y5_real, output signed [23:0] y5_imag, output signed [23:0] y6_real, output signed [23:0] y6_imag, output signed [23:0] y7_real, output signed [23:0] y7_imag ); //operating data wire signed [23:0] xm_real [3:0] [7:0]; wire signed [23:0] xm_imag [3:0] [7:0]; wire en_connect [15:0] ; assign en_connect[0] = en; assign en_connect[1] = en; assign en_connect[2] = en; assign en_connect[3] = en; //factor, multiplied by 0x2000 wire signed [15:0] factor_real [3:0] ; wire signed [15:0] factor_imag [3:0]; assign factor_real[0] = 16'h2000; //1 assign factor_imag[0] = 16'h0000; //0 assign factor_real[1] = 16'h16a0; //sqrt(2)/2 assign factor_imag[1] = 16'he95f; //-sqrt(2)/2 assign factor_real[2] = 16'h0000; //0 assign factor_imag[2] = 16'he000; //-1 assign factor_real[3] = 16'he95f; //-sqrt(2)/2 assign factor_imag[3] = 16'he95f; //-sqrt(2)/2 //输入初始化,和码位有关倒置 assign xm_real[0][0] = x0_real; assign xm_real[0][1] = x4_real; assign xm_real[0][2] = x2_real; assign xm_real[0][3] = x6_real; assign xm_real[0][4] = x1_real; assign xm_real[0][5] = x5_real; assign xm_real[0][6] = x3_real; assign xm_real[0][7] = x7_real; assign xm_imag[0][0] = x0_imag; assign xm_imag[0][1] = x4_imag; assign xm_imag[0][2] = x2_imag; assign xm_imag[0][3] = x6_imag; assign xm_imag[0][4] = x1_imag; assign xm_imag[0][5] = x5_imag; assign xm_imag[0][6] = x3_imag; assign xm_imag[0][7] = x7_imag; //butter instantiaiton //integer index[11:0] ; genvar m, k; generate //3 stage for(m=0; m<=2; m=m+1) begin: stage for (k=0; k<=3; k=k+1) begin: unit butterfly u_butter( .clk (clk ) , .rstn (rstn ) , .en (en_connect[m*4 + k] ) , //是否再组内?组编号+组内编号:下组编号+新组内编号 .xp_real (xm_real[ m ] [k[m:0] < (1< 22'h3f_ffff) ? 'b0 : x1_real + 1 ; x2_real = (x2_real > 22'h3f_ffff) ? 'b0 : x2_real + 31 ; x3_real = (x3_real > 22'h3f_ffff) ? 'b0 : x3_real + 1 ; x4_real = (x4_real > 22'h3f_ffff) ? 'b0 : x4_real + 23 ; x5_real = (x5_real > 22'h3f_ffff) ? 'b0 : x5_real + 1 ; x6_real = (x6_real > 22'h3f_ffff) ? 'b0 : x6_real + 6 ; x7_real = (x7_real > 22'h3f_ffff) ? 'b0 : x7_real + 1 ; x0_imag = (x0_imag > 22'h3f_ffff) ? 'b0 : x0_imag + 2 ; x1_imag = (x1_imag > 22'h3f_ffff) ? 'b0 : x1_imag + 5 ; x2_imag = (x2_imag > 22'h3f_ffff) ? 'b0 : x2_imag + 3 ; x3_imag = (x3_imag > 22'h3f_ffff) ? 'b0 : x3_imag + 6 ; x4_imag = (x4_imag > 22'h3f_ffff) ? 'b0 : x4_imag + 4 ; x5_imag = (x5_imag > 22'h3f_ffff) ? 'b0 : x5_imag + 8 ; x6_imag = (x6_imag > 22'h3f_ffff) ? 'b0 : x6_imag + 11 ; x7_imag = (x7_imag > 22'h3f_ffff) ? 'b0 : x7_imag + 7 ; end end //finish simulation initial #1000 $finish ;endmodule仿真结果
大致可以看出,fft 结果可以流水输出。
用 matlab 自带的 fft 函数对相同数据进行运算,前 2 组数据 fft 结果如下。
可以看出,第一次输入的数据信号只有实部有效时,fft 结果是完全一样的。
但是第二次输入的数据复部也有信号,此时两者之间的结果开始有误差,有时误差还很大。
用 matlab 对 verilog 实现的 fft 过程进行模拟,发现此过程的 fft 结果和 verilog 实现的 fft 结果基本一致。
将有误差的两种 fft 结果取绝对值进行比较,图示如下。
可以看出,fft 结果的趋势大致相同,但在个别点有肉眼可见的误差。
设计总结:
就如设计蝶形单元时所说,旋转因子量化时,位宽的选择就会引入误差。
而且每个蝶形单元的运算结果都会进行截取,也会引入误差。
matlab 计算 fft 时不用考虑精度问题,以其最高精度对数据进行 fft 计算。
以上所述,都会导致最后两种 fft 计算方式结果的差异。
感兴趣的学者,可以将旋转因子和输入数据位宽再进行一定的增加,fft 点数也可以增加,然后再进行仿真对比,相对误差应该会减小。
附录:matlab 使用
生成旋转因子
8 点 fft 只需要用到 4 个旋转因子。 旋转因子扩大倍数为 8192。
clear all;close all;clc;%=======================================================% wnr calcuting%=======================================================for r = 0:3 wnr_factor = cos(pi/4*r) - j*sin(pi/4*r) ; wnr_integer = floor(wnr_factor * 2^13) ; if (real(wnr_integer)<0) wnr_real = real(wnr_integer) + 2^16 ; %负数的补码 else wnr_real = real(wnr_integer) ; end if (imag(wnr_integer)<0) wnr_imag = imag(wnr_integer) + 2^16 ; else wnr_imag = imag(wnr_integer); end wnr(2*r+1,:) = dec2hex(wnr_real) %实部 wnr(2*r+2,:) = dec2hex(wnr_imag) %虚部endfft 结果对比
matlab 模拟 verilog 实现 fft 的过程如下,也包括 2 种 fft 结果的对比。
clear all;close all;clc;%=======================================================% 8dots fft%=======================================================for r=0:3 wnr(r+1) = cos(pi/4*r) - j*sin(pi/4*r) ;endx = [10, 20, 30, 40, 10, 20 ,30 ,40];step = [1+2j, 1+5j, 31+3j, 1+6j, 23+4j, 1+8j, 6+11j, 1+7j];x2 = x + step;xm0 = [x2(0+1), x2(4+1), x2(2+1), x2(6+1), x2(1+1), x2(5+1), x2(3+1), x2(7+1)] ;%% stage1 xm1(1) = xm0(1) + xm0(2)*wnr(1) ;xm1(2) = xm0(1) - xm0(2)*wnr(1) ;xm1(3) = xm0(3) + xm0(4)*wnr(1) ;xm1(4) = xm0(3) - xm0(4)*wnr(1) ;xm1(5) = xm0(5) + xm0(6)*wnr(1) ;xm1(6) = xm0(5) - xm0(6)*wnr(1) ;xm1(7) = xm0(7) + xm0(8)*wnr(1) ;xm1(8) = xm0(7) - xm0(8)*wnr(1) ;floor(xm1(:))%% stage2xm2(1) = xm1(1) + xm1(3)*wnr(1) ;xm2(3) = xm1(1) - xm1(3)*wnr(1) ;xm2(2) = xm1(2) + xm1(4)*wnr(2) ;xm2(4) = xm1(2) - xm1(4)*wnr(2) ;xm2(5) = xm1(5) + xm1(7)*wnr(1) ;xm2(7) = xm1(5) - xm1(7)*wnr(1) ;xm2(6) = xm1(6) + xm1(8)*wnr(2) ;xm2(8) = xm1(6) - xm1(8)*wnr(2) ;floor(xm2(:))%% stage3xm3(1) = xm2(1) + xm2(5)*wnr(1) ;xm3(5) = xm2(1) - xm2(5)*wnr(1) ;xm3(2) = xm2(2) + xm2(6)*wnr(2) ;xm3(6) = xm2(2) - xm2(6)*wnr(2) ;xm3(3) = xm2(3) + xm2(7)*wnr(3) ;xm3(7) = xm2(3) - xm2(7)*wnr(3) ;xm3(4) = xm2(4) + xm2(8)*wnr(4) ;xm3(8) = xm2(4) - xm2(8)*wnr(4) ;floor(xm3(:))%% fftfft1 = fft(x)fft2 = fft(x2)plot(1:8, abs(fft2))hold onplot(1:8, abs(xm3), 'r')
虚拟现实技术对于电子竞技产业有着什么影响
小米成绩斐然 已领衔印度智能手机市场
dfrobotSIM7000C扩展板简介
土壤含水量测定仪是如何测定土壤的含水量
工控机触摸屏一体
Verilog FFT设计
基于TDA2009的25瓦功率放大器电路
复旦大学利用柔性薄膜组装集成芯片传感器,实现多环境参数探测功能
Leader千兆六电口|为机器视觉而生的网卡
5G如何让无人驾驶跑起来
采用新技术,短时间现场修复造纸浆泵泵体冲刷磨损
TCL Xess mini平板:多场景化、家庭娱乐“宛如生活”
亿铸“芯”势力赋能AI未来
工程师电子制作故事:锂电池充电器DIY设计
sgnx函数的概念、特征和用途
华云数据许广彬:这些企业的数字化转型故事,印证着超融合的魅力
甚薄型QFN封装技术
立得空间无人机快速测绘系统的系统架构分析
苹果正式发布了iOS 12.3的第四个测试版用户可以通过iOS的OTA更新
ITE DP转HDMI芯片IT6561