与sic和gan相比,β-ga2o3有望以低成本制造出高耐压且低损失的功率半导体元件,因而引起了极大关注。契机源于日本信息通信研究机构等的研究小组开发出的β-ga2o3晶体管。下面请这些研究小组的技术人员,以论文形式介绍一下β-ga2o3的特点、研发成果以及今后的发展。
我们一直在致力于利用氧化镓(ga2o3)的功率半导体元件(以下简称功率元件)的研发。ga2o3与作为新一代功率半导体材料推进开发的sic和gan相比,有望以低成本制造出高耐压且低损失的功率元件。其原因在于材料特性出色,比如带隙比sic及gan大,而且还可利用能够高品质且低成本制造单结晶的“溶液生长法”。
在我们瞄准的功率元件应用中,使用ga2o3试制了“mesfet”(metal-semiconductorfield effect transistor,金属半导体场效应晶体管)。尽管是未形成保护膜(钝化膜)的非常简单的构造,但试制品显示出了耐压高、泄漏电流小的特性。而使用sic及gan来制造相同构造的元件时,要想实现像试制品这样的特性,则是非常难的。
虽然研发尚处于初期阶段,但我们认为ga2o3的潜力巨大。本论文将介绍ga2o3在功率元件用途方面的使用价值、研发成果,以及今后的目标等。
比sic及gan更为出色的性能
ga2o3是金属镓的氧化物,同时也是一种半导体化合物。其结晶形态截至目前(2012年2月)已确认有α、β、γ、δ、ε五种,其中,β结构最稳定。与ga2o3的结晶生长及物性相关的研究报告大部分都使用β结构。我们也使用β结构展开了研发。
β-ga2o3具备名为“β-gallia”的单结晶构造。β-ga2o3的带隙很大,达到4.8~4.9ev,这一数值为si的4倍多,而且也超过了sic的3.3ev 及gan的3.4ev(表1)。一般情况下,带隙大的话,击穿电场强度也会很大(图1)。β-ga2o3的击穿电场强度估计为8mv/cm左右,达到si的20多倍,相当于sic及gan的2倍以上。
图1:击穿电场强度大
带隙越大,击穿电场强度就越大。β-ga2o3的击穿电场强度为推测值。
β-ga2o3在显示出出色的物性参数的同时,也有一些不如sic及gan的方面,这就是迁移率和导热率低,以及难以制造p型半导体。不过,我们认为这些方面对功率元件的特性不会有太大的影响。
之所以说迁移率低不会有太大问题,是因为功率元件的性能很大程度上取决于击穿电场强度。就β-ga2o3而言,作为低损失性指标的“巴利加优值(baliga’s figure of merit)”与击穿电场强度的3次方成正比、与迁移率的1次方成正比。因此,巴加利优值较大,是sic的约10倍、gan的约4倍。
一般情况下,导热率低的话,很难使功率元件在高温下工作。不过,工作温度再高也不过200~250℃,因此实际使用时不会有问题。而且封装有功率元件的模块及电源电路等使用的封装材料、布线、焊锡、密封树脂等周边构件的耐热温度最高也不过200~250℃程度。因此,功率元件的工作温度也必须要控制在这一水平之下。
另外,关于难以制造p型半导体这一点,使用β-ga2o3来制作功率元件时,可以将其用作n型半导体,因此也不是什么问题。而且,通过掺杂sn及si等施主杂质,可在电子浓度为1016~1019cm-3的大范围内对n型传导特性进行控制(图2)。
图2:n型传导特性的控制范围大
使用β-ga2o3时,可在大范围内控制n型传导性。实际上,通过掺杂施主杂质,可在1016~1019cm-3范围内调整电子密度。
导通电阻仅为sic的1/10
β-ga2o3由于巴利加优值较高,因此理论上来说,在制造相同耐压的单极功率元件时,元件的导通电阻比采用sic及gan低很多(图3)。降低导通电阻有利于减少电源电路在导通时的电力损失。
图3:导通电阻比sic及gan小
在相同耐压下比较时,β-ga2o3制造的单极元件,其导通电阻理论上可降至使用sic时的1/10、使用gan时的1/3。图中的直线与巴加利优值的倒数相等。直线位置越接近右下方,制成的功率元件性能就越出色。
使用β-ga2o3的功率元件不仅能够降低导通时的损失,而且还可降低开关时的损失。因为从理论上说,在耐压1kv以上的高耐压用途方面,可以使用单极元件。
比如,设有利用保护膜来减轻电场向栅极集中的“场板”的单极晶体管(mosfet),其耐压可达到3k~4kv。
而使用si的话在耐压为1kv时就必须使用双极元件,即便使用耐压公认较高的sic,在耐压为4kv时也必须使用双极元件。双极元件以电子和空穴为载流子,因此与只以电子为载流子的单极元件相比,在导通及截止的开关动作时,沟道内的载流子的产生和消失会耗费时间,损失容易变大。
比如si,在耐压1kv以上的用途方面通常是晶体管使用igbt,二极管使用pin二极管。
sic的话,耐压4kv以下用途时晶体管可使用mosfet等单极元件,二极管可使用肖特基势垒二极管(sbd)等单极元件。但在耐压4kv以上时导通电阻超过10mωcm2,单极元件不具备实用性。因此必须使用双极元件。
搞事情剧透狂魔 LG又发剧透贴,这次是一堆奇奇怪怪的蓝牙设备
智能控制在DC/DC变换器中的应用
胶体蓄电池的优势_胶体蓄电池维护
维安达斯防爆探测器在太原地下管廊项目的应用
温湿度试验箱的功能特点
氧化镓制造功率元件,比SiC更出色?
热敏电阻的原理和阻值关系
如何制作吉他失真踏板
英诺尔推新型NFC温度记录标签,可实时测温及温度记录
简化FPGA应用设计,ADI力推AD9250
新品速递,UXR-B加速不止一点点
迦智科技高精度侧叉物料取放机器人:实现生产物流全流程的闭环管理
Clarity 3D Workbench仿真USB2.0实例
华为WATCHGT活力款评测 到底怎么样
关于汽车扭矩矢量分配技术的解析
中国半导体制造商加紧抢购二手芯片制造设备
简单阐述一下光纤的一些区别
Qutrit量子实验获得成功,量子通信发展迈出重要一步
NPOI WEG报表工具包简介
智能生态养殖系统方案