提高光谱准确性的自动波长和强度校准程序

色散光谱仪器的校准长期以来一直都是一个难题。当光谱沿着一对轴绘制时,x轴通常代表波长或波数,而y轴代表强度。光谱仪器设备的制造商通常只负责分光的任务,而把确定其绝对位置及其精度的任务留给了用户。通常,通过测量两条或多条汞发射线的位置并在它们之间插值来校准x轴。
2010年,普林斯顿仪器公司(princeton instruments)推出了64位lightfieldtm数据采集软件,其特点是一种成为intellicaltm的波长校准程序,基于x射线光谱学中使用的rietveld细化算法。使用nist光谱数据库中的发射线源,intellical可以同时计算安装在光谱仪上26mmccd的整个焦平面上每个像素的波长。
每个像素处校准的波长精度与光谱数据文件一起存储,从而确保可靠的数据验证和可追溯性。将结果与发射线表进行比较表明,智能波长校准程序的精度通常比传统插值方法高4到10倍。
波长不准确并非一个小问题。许多光谱实验需要使用差分光谱,即从标准光谱中减去实验光谱。在拉曼光谱中,波长仅移动一个像素(即分辨率极限)将使差光谱无法识别。这通常需要重新校准仪器,并重复整个实验。
图1显示了一个真实的差分拉曼光谱(显示为红色)和一个从单个像素的偏移中获得的杂散差分光谱(显示为蓝色)。没有明显的方法来判断哪个是正确的光谱。校准程序越好、越简单,重复测量或发布虚假数据的可能性就越小。
图 1
当然,除了拉曼光谱在其他领域包括过程分析、法医和危险品识别等波长准确性也是至关重要的。搜索匹配算法使用模式识别例程将测量的光谱与光谱库进行比较。准确了解给定波段的拉曼位移,或libs光谱中某条线的精确发射波长,可以确保匹配成功,而不准确的光谱会增加误报和漏报的风险。
2011年,普林斯顿仪器公司(princeton instruments)发布的lightfield 4.0,这是对创新型数据采集软件包的重大更新,为pi-max®3增强型ccd相机提供了新的支持。还发布了intellical 2.0,其中包括全自动波长和强度校准程序。强度校准引擎是一个usb供电的多led光源,发射波长为400至1100 nm。每个高度稳定的光源都根据标准进行单独校准,光谱记录在设备固件中。
为了校准光谱仪,可以用intensicaltm光源照亮入口狭缝,并记录光谱(如图7所示)。图2中显示的未校正光谱显示了610 nm处的光谱拼接伪影和830 nm处的实质性重新定位,这是由用于收集数据的背感光传感器上的干涉条纹引起的。
在校正后的光谱中(图2),缝合和重新定位的伪影消失了。相对峰高也得到了修正。对于这个特定的例子,强度光源被用来校正其自身的光谱,但程序完全是通用的。拉曼光谱、光致发光光谱、荧光光谱、吸收光谱或libs光谱可以像光源本身一样容易地进行校正。
图 2 未校正光谱(左)与强度校正光谱(右)
普林斯顿仪器公司(princeton instruments)通过增加关键性能的可用性,再次提升了色散光谱仪器的科学性。光谱用户不再浪费宝贵的实验时间来开发自己的校正程序,可以使用automated intellical来获得记录光谱的两个轴的100%置信度。


面筋仪的使用说明及其使用效果的介绍
MEAS倾角传感器的选型和安装
可编程逻辑电路—版图验证工具的作用
Unify合作伙伴大会,共同探讨云通信时代
无源探头,差分探头和电流探头如何选择?
提高光谱准确性的自动波长和强度校准程序
5GtoB的典型案例和应用前景
网桥的分类
2020人工智能 当下可期
入门学习选择什么样的单片机
打造属于中国的工业互联网平台
iphone抹掉数据后能恢复吗
云服务器的安全性能要比传统服务器的高
奥迪800V ADAS系统架构技术分析
工厂能源管控系统软硬件集成平台方案
一个基于Tensorflow框架的开源Tacotron实现
映众RTX2070冰龙上手 到底值不值得买
快来get泰克探头的选型攻略!
基于ISP的图像紫边问题分析
郭明錤:到2024年印度产iPhone占比将提高至20-25%